## Joel Janin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11424009/publications.pdf Version: 2024-02-01



LOFI JANIN

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Changes in protein structure at the interface accompanying complex formation. IUCrJ, 2015, 2, 643-652.                                                                                                  | 2.2 | 21        |
| 2  | A minimal model of protein–protein binding affinities. Protein Science, 2014, 23, 1813-1817.                                                                                                            | 7.6 | 27        |
| 3  | The targets of CAPRI rounds 20–27. Proteins: Structure, Function and Bioinformatics, 2013, 81, 2075-2081.                                                                                               | 2.6 | 14        |
| 4  | Reassessing buried surface areas in protein–protein complexes. Protein Science, 2013, 22, 1453-1457.                                                                                                    | 7.6 | 27        |
| 5  | Structural templates for modeling homodimers. Protein Science, 2013, 22, 1655-1663.                                                                                                                     | 7.6 | 16        |
| 6  | Docking Predictions of Protein-Protein Interactions and Their Assessment: The CAPRI Experiment.<br>Focus on Structural Biology, 2013, , 87-104.                                                         | 0.1 | 5         |
| 7  | Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.                     | 2.6 | 87        |
| 8  | Protein flexibility, not disorder, is intrinsic to molecular recognition. F1000 Biology Reports, 2013, 5, 2.                                                                                            | 4.0 | 66        |
| 9  | Templates are available to model nearly all complexes of structurally characterized proteins.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9438-9441. | 7.1 | 178       |
| 10 | Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design<br>Methodology. Journal of Molecular Biology, 2011, 414, 289-302.                                               | 4.2 | 131       |
| 11 | A survey of hemoglobin quaternary structures. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2861-2870.                                                                                    | 2.6 | 21        |
| 12 | A structureâ€based benchmark for protein–protein binding affinity. Protein Science, 2011, 20, 482-491.                                                                                                  | 7.6 | 252       |
| 13 | Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: Structural and catalytic properties. Antiviral Research, 2010, 86, 101-120.                                        | 4.1 | 96        |
| 14 | The targets of CAPRI Rounds 13–19. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3067-3072.                                                                                               | 2.6 | 25        |
| 15 | Sideâ€chain rotamer transitions at proteinâ€protein interfaces. Proteins: Structure, Function and<br>Bioinformatics, 2010, 78, 3219-3225.                                                               | 2.6 | 15        |
| 16 | Protein–protein docking benchmark version 4.0. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3111-3114.                                                                                   | 2.6 | 390       |
| 17 | Protein–protein docking tested in blind predictions: the CAPRI experiment. Molecular BioSystems, 2010, 6, 2351.                                                                                         | 2.9 | 171       |
| 18 | X-ray Study of Protein–Protein Complexes and Analysis of Interfaces. , 2010, , 1-24.                                                                                                                    |     | 1         |

X-ray Study of Proteinâ<br/>€"Protein Complexes and Analysis of Interfaces. , 2010, , 1-24. 18

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Subunit Interfaces of Weakly Associated Homodimeric Proteins. Journal of Molecular Biology, 2010, 398, 146-160.                                                                                                               | 4.2  | 107       |
| 20 | Analysis and Prediction of Protein Quaternary Structure. Methods in Molecular Biology, 2010, 609, 349-364.                                                                                                                        | 0.9  | 22        |
| 21 | Nucleoside Diphosphate Kinase and the Activation of Antiviral Phosphonate Analogs of Nucleotides:<br>Binding Mode and Phosphorylation of Tenofovir Derivatives. Nucleosides, Nucleotides and Nucleic<br>Acids, 2009, 28, 776-792. | 1.1  | 18        |
| 22 | Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly-roll fold. Protein Science, 2009, 14, 209-215.                                                                  | 7.6  | 13        |
| 23 | Relating Macromolecular Function and Association: The Structural Basis of Protein–DNA and RNA<br>Recognition. Cellular and Molecular Bioengineering, 2008, 1, 327-338.                                                            | 2.1  | 11        |
| 24 | Residue conservation in viral capsid assembly. Proteins: Structure, Function and Bioinformatics, 2008, 71, 407-414.                                                                                                               | 2.6  | 14        |
| 25 | Protein–protein docking benchmark version 3.0. Proteins: Structure, Function and Bioinformatics, 2008, 73, 705-709.                                                                                                               | 2.6  | 224       |
| 26 | Protein–protein interaction and quaternary structure. Quarterly Reviews of Biophysics, 2008, 41, 133-180.                                                                                                                         | 5.7  | 354       |
| 27 | Dissecting protein–RNA recognition sites. Nucleic Acids Research, 2008, 36, 2705-2716.                                                                                                                                            | 14.5 | 108       |
| 28 | DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein–protein interactions. Bioinformatics, 2008, 24, 652-658.                                                                   | 4.1  | 83        |
| 29 | A Dissection of the Protein–Protein Interfaces in Icosahedral Virus Capsids. Journal of Molecular<br>Biology, 2007, 367, 574-590.                                                                                                 | 4.2  | 29        |
| 30 | Macromolecular recognition in the Protein Data Bank. Acta Crystallographica Section D: Biological<br>Crystallography, 2007, 63, 1-8.                                                                                              | 2.5  | 97        |
| 31 | The targets of CAPRI rounds 6–12. Proteins: Structure, Function and Bioinformatics, 2007, 69, 699-703.                                                                                                                            | 2.6  | 26        |
| 32 | Structural Genomics: Winning the Second Half of the Game. Structure, 2007, 15, 1347-1349.                                                                                                                                         | 3.3  | 10        |
| 33 | Peptide segments in protein-protein interfaces. Journal of Biosciences, 2007, 32, 101-111.                                                                                                                                        | 1.1  | 37        |
| 34 | Cloning, Production, and Purification of Proteins for a Medium-Scale Structural Genomics Project.<br>Methods in Molecular Biology, 2007, 363, 21-37.                                                                              | 0.9  | 14        |
| 35 | Crystal structure of the yeast His6 enzyme suggests a reaction mechanism. Protein Science, 2006, 15, 1516-1521.                                                                                                                   | 7.6  | 8         |
| 36 | Revisiting the Voronoi description of protein-protein interfaces. Protein Science, 2006, 15, 2082-2092.                                                                                                                           | 7.6  | 72        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessing predictions of protein-protein interaction: The CAPRI experiment. Protein Science, 2005, 14, 278-283.                                                                                                               | 7.6 | 158       |
| 38 | Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Science, 2005, 14, 1350-1356.                                                                                                       | 7.6 | 20        |
| 39 | Crystal structure of yeast YER010Cp, aknotable member of the RraA protein family. Protein Science, 2005, 14, 2751-2758.                                                                                                       | 7.6 | 5         |
| 40 | High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics<br>Project: one size fits all?. Acta Crystallographica Section D: Biological Crystallography, 2005, 61,<br>664-670.              | 2.5 | 14        |
| 41 | Hydration of protein-protein interfaces. Proteins: Structure, Function and Bioinformatics, 2005, 60, 36-45.                                                                                                                   | 2.6 | 194       |
| 42 | Sailing the route from Gaeta, Italy, to CAPRI. Proteins: Structure, Function and Bioinformatics, 2005, 60, 149-149.                                                                                                           | 2.6 | 5         |
| 43 | The targets of CAPRI rounds 3-5. Proteins: Structure, Function and Bioinformatics, 2005, 60, 170-175.                                                                                                                         | 2.6 | 23        |
| 44 | Protein-protein docking benchmark 2.0: An update. Proteins: Structure, Function and Bioinformatics, 2005, 60, 214-216.                                                                                                        | 2.6 | 254       |
| 45 | A docking analysis of the statistical physics of protein–protein recognition. Physical Biology, 2005, 2, S17-S23.                                                                                                             | 1.8 | 14        |
| 46 | Crystal Structure of the Bifunctional Chorismate Synthase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 619-625.                                                                                 | 3.4 | 29        |
| 47 | Crystal Structure of Yeast Allantoicase Reveals a Repeated Jelly Roll Motif. Journal of Biological<br>Chemistry, 2004, 279, 23447-23452.                                                                                      | 3.4 | 23        |
| 48 | Structure of Protein Phosphatase Methyltransferase 1 (PPM1), a Leucine Carboxyl Methyltransferase<br>Involved in the Regulation of Protein Phosphatase 2A Activity. Journal of Biological Chemistry, 2004,<br>279, 8351-8358. | 3.4 | 82        |
| 49 | Crystal Structure and Functional Characterization of Yeast YLR011wp, an Enzyme with NAD(P)H-FMN and Ferric Iron Reductase Activities. Journal of Biological Chemistry, 2004, 279, 34890-34897.                                | 3.4 | 71        |
| 50 | Crystal Structure of the YDR533c S. cerevisiae Protein, a Class II Member of the Hsp31 Family.<br>Structure, 2004, 12, 839-847.                                                                                               | 3.3 | 31        |
| 51 | Refolding strategies from inclusion bodies in a structural genomics project. Journal of Structural and Functional Genomics, 2004, 5, 195-204.                                                                                 | 1.2 | 49        |
| 52 | Crystal structure of the YGR205w protein from Saccharomyces cerevisiae : Close structural<br>resemblance to E. coli pantothenate kinase. Proteins: Structure, Function and Bioinformatics, 2004,<br>54, 776-783.              | 2.6 | 17        |
| 53 | The Paris-Sud yeast structural genomics pilot-project: from structure to function. Biochimie, 2004,<br>86, 617-623.                                                                                                           | 2.6 | 18        |
| 54 | A Dissection of Specific and Non-specific Protein–Protein Interfaces. Journal of Molecular Biology,<br>2004, 336, 943-955.                                                                                                    | 4.2 | 426       |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Genome-wide studies of protein–protein interaction. Current Opinion in Structural Biology, 2003, 13,<br>383-388.                                                                                                                  | 5.7 | 39        |
| 56 | A structural genomics initiative on yeast proteins. Journal of Synchrotron Radiation, 2003, 10, 4-8.                                                                                                                              | 2.4 | 20        |
| 57 | CAPRI: A Critical Assessment of PRedicted Interactions. Proteins: Structure, Function and Bioinformatics, 2003, 52, 2-9.                                                                                                          | 2.6 | 586       |
| 58 | A protein-protein docking benchmark. Proteins: Structure, Function and Bioinformatics, 2003, 52, 88-91.                                                                                                                           | 2.6 | 242       |
| 59 | Dissecting subunit interfaces in homodimeric proteins. Proteins: Structure, Function and Bioinformatics, 2003, 53, 708-719.                                                                                                       | 2.6 | 256       |
| 60 | Nucleotide Binding to Nucleoside Diphosphate Kinases: X-ray Structure of Human NDPK-A in Complex with ADP and Comparison to Protein Kinases. Journal of Molecular Biology, 2003, 332, 915-926.                                    | 4.2 | 36        |
| 61 | The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements<br>and candidate matrix association regions. Gene, 2003, 312, 189-195.                                                      | 2.2 | 11        |
| 62 | Structural Analysis of the Activation of Ribavirin Analogs by NDP Kinase: Comparison with Other<br>Ribavirin Targets. Molecular Pharmacology, 2003, 63, 538-546.                                                                  | 2.3 | 24        |
| 63 | Crystal Structure of the Yeast Phox Homology (PX) Domain Protein Grd19p Complexed to<br>Phosphatidylinositol-3-phosphate. Journal of Biological Chemistry, 2003, 278, 50371-50376.                                                | 3.4 | 64        |
| 64 | HPr Kinase/Phosphorylase, the Sensor Enzyme of Catabolite Repression in Gram-Positive Bacteria:<br>Structural Aspects of the Enzyme and the Complex with Its Protein Substrate. Journal of<br>Bacteriology, 2003, 185, 4003-4010. | 2.2 | 45        |
| 65 | Improving Nucleoside Diphosphate Kinase for Antiviral Nucleotide Analogs Activation. Journal of<br>Biological Chemistry, 2002, 277, 39953-39959.                                                                                  | 3.4 | 28        |
| 66 | X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13437-13441.                            | 7.1 | 73        |
| 67 | Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: A relic of early<br>life?. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99,<br>13442-13447.              | 7.1 | 112       |
| 68 | Introduction. Advances in Protein Chemistry, 2002, 61, 1-8.                                                                                                                                                                       | 4.4 | 31        |
| 69 | Nucleoside-Diphosphate Kinase: Structural and Kinetic Analysis of Reaction Pathway and Phosphohistidine Intermediate. Methods in Enzymology, 2002, 354, 118-134.                                                                  | 1.0 | 16        |
| 70 | Structural basis of macromolecular recognition. Advances in Protein Chemistry, 2002, 61, 9-73.                                                                                                                                    | 4.4 | 147       |
| 71 | Dissecting protein-protein recognition sites. Proteins: Structure, Function and Bioinformatics, 2002, 47, 334-343.                                                                                                                | 2.6 | 549       |
| 72 | Welcome to CAPRI: A Critical Assessment of PRedicted Interactions. Proteins: Structure, Function and Bioinformatics, 2002, 47, 257-257.                                                                                           | 2.6 | 57        |

Joel Janin

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | X-ray structure ofMycobacterium tuberculosis nucleoside diphosphate kinase. Proteins: Structure,<br>Function and Bioinformatics, 2002, 47, 556-557.                                                         | 2.6 | 33        |
| 74 | ACTIVATION OF ANTI-REVERSE TRANSCRIPTASE NUCLEOTIDE ANALOGS BY NUCLEOSIDE DIPHOSPHATE KINASE: IMPROVEMENT BY α-BORANOPHOSPHATE SUBSTITUTION. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 297-306. | 1.1 | 14        |
| 75 | Chemical Rescue of Phosphoryl Transfer in a Cavity Mutant:Â A Cautionary Tale for Site-Directed<br>Mutagenesisâ€,‡. Biochemistry, 2001, 40, 403-413.                                                        | 2.5 | 27        |
| 76 | Binding of Nucleotides to Nucleoside Diphosphate Kinase: A Calorimetric Study‡. Biochemistry, 2001,<br>40, 4583-4589.                                                                                       | 2.5 | 15        |
| 77 | Mechanism of phosphoryl transfer by nucleoside diphosphate kinase. FEBS Journal, 2001, 268, 1964-1971.                                                                                                      | 0.2 | 17        |
| 78 | Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins: Structure,<br>Function and Bioinformatics, 2001, 44, 119-122.                                                          | 2.6 | 606       |
| 79 | Three-dimensional structure of nucleoside diphosphate kinase. Journal of Bioenergetics and Biomembranes, 2000, 32, 215-225.                                                                                 | 2.3 | 115       |
| 80 | Structural basis for activation of α-boranophosphate nucleotide analogues targeting drug-resistant<br>reverse transcriptase. EMBO Journal, 2000, 19, 3520-3529.                                             | 7.8 | 63        |
| 81 | The Human nm23-H4 Gene Product Is a Mitochondrial Nucleoside Diphosphate Kinase. Journal of<br>Biological Chemistry, 2000, 275, 14264-14272.                                                                | 3.4 | 128       |
| 82 | Wet and dry interfaces: the role of solvent in protein–protein and protein–DNA recognition.<br>Structure, 1999, 7, R277-R279.                                                                               | 3.3 | 199       |
| 83 | p55-hGRF, a short natural form of the Ras-GDP exchange factor. High yield production and characterization. FEBS Journal, 1999, 263, 806-816.                                                                | 0.2 | 2         |
| 84 | Structural Features of Proteinâ^'Nucleic Acid Recognition Sitesâ€. Biochemistry, 1999, 38, 1999-2017.                                                                                                       | 2.5 | 321       |
| 85 | Phosphorylation of Anti-HIV Nucleoside Analogs by Nucleoside Diphosphate Kinase. Nucleosides &<br>Nucleotides, 1999, 18, 829-830.                                                                           | 0.5 | 2         |
| 86 | Catalytic Mechanism of Nucleoside Diphosphate Kinase Investigated Using Nucleotide Analogues,<br>Viscosity Effects, and X-ray Crystallography,. Biochemistry, 1999, 38, 7265-7272.                          | 2.5 | 63        |
| 87 | Nucleophilic Activation by Positioning in Phosphoryl Transfer Catalyzed by Nucleoside Diphosphate<br>Kinaseâ€,‡. Biochemistry, 1999, 38, 4701-4711.                                                         | 2.5 | 62        |
| 88 | The atomic structure of protein-protein recognition sites 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 285, 2177-2198.                                                                    | 4.2 | 1,886     |
| 89 | A soft, mean-field potential derived from crystal contacts for predicting protein-protein interactions.<br>Journal of Molecular Biology, 1998, 283, 1037-1047.                                              | 4.2 | 40        |
| 90 | Pre-steady State of Reaction of Nucleoside Diphosphate Kinase with Anti-HIV Nucleotides. Journal of<br>Biological Chemistry, 1998, 273, 11491-11497.                                                        | 3.4 | 50        |

| #   | Article                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | 3′-Phosphorylated Nucleotides Are Tight Binding Inhibitors of Nucleoside Diphosphate Kinase Activity.<br>Journal of Biological Chemistry, 1998, 273, 28773-28778. | 3.4  | 35        |
| 92  | Specific versus non-specific contacts in protein crystals. Nature Structural Biology, 1997, 4, 973-974.                                                           | 9.7  | 190       |
| 93  | A polymerase I palm in adenylyl cyclase?. Nature, 1997, 388, 34-34.                                                                                               | 27.8 | 13        |
| 94  | Ãngströms and calories. Structure, 1997, 5, 473-479.                                                                                                              | 3.3  | 45        |
| 95  | The kinetics of protein-protein recognition. Proteins: Structure, Function and Bioinformatics, 1997, 28, 153-161.                                                 | 2.6  | 189       |
| 96  | Mechanism of the nucleoside diphosphate kinase reaction: X-ray structure of the phosphohistidine intermediate. Techniques in Protein Chemistry, 1996, 7, 209-217. | 0.3  | 6         |
| 97  | Quantifying biological specificity: The statistical mechanics of molecular recognition. Proteins:<br>Structure, Function and Bioinformatics, 1996, 25, 438-445.   | 2.6  | 1         |
| 98  | For Guldberg and Waage, with love and cratic entropy. Proteins: Structure, Function and<br>Bioinformatics, 1996, 24, i-ii.                                        | 2.6  | 42        |
| 99  | Nucleoside Diphosphate Kinase. Journal of Biological Chemistry, 1996, 271, 19928-19934.                                                                           | 3.4  | 45        |
| 100 | Cellular Phosphorylation of Anti-HIV Nucleosides. Journal of Biological Chemistry, 1996, 271, 7887-7890.                                                          | 3.4  | 85        |
| 101 | Thermal Stability of Hexameric and Tetrameric Nucleoside Diphosphate Kinases. Journal of Biological Chemistry, 1996, 271, 17845-17851.                            | 3.4  | 40        |
| 102 | Quantifying biological specificity: The statistical mechanics of molecular recognition. Proteins:<br>Structure, Function and Bioinformatics, 1996, 25, 438-445.   | 2.6  | 66        |
| 103 | Protein-protein recognition. Progress in Biophysics and Molecular Biology, 1995, 64, 145-166.                                                                     | 2.9  | 116       |
| 104 | Elusive affinities. Proteins: Structure, Function and Bioinformatics, 1995, 21, 30-39.                                                                            | 2.6  | 162       |
| 105 | Protein-protein interaction at crystal contacts. Proteins: Structure, Function and Bioinformatics, 1995, 23, 580-587.                                             | 2.6  | 255       |
| 106 | Thermodynamics of the temperatureâ€induced unfolding of globular proteins. Protein Science, 1995, 4,<br>1315-1324.                                                | 7.6  | 48        |
| 107 | Proteins with a ring. Structure, 1994, 2, 571-573.                                                                                                                | 3.3  | 4         |
| 108 | Rigid-body docking with mutant constraints of influenza hemagglutinin with antibody HC19. Proteins:<br>Structure, Function and Bioinformatics, 1994, 18, 8-18.    | 2.6  | 32        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Adenosine 5'-diphosphate binding and the active site of nucleoside diphosphate kinase. Biochemistry, 1994, 33, 459-467.                                                                           | 2.5  | 98        |
| 110 | Protein-Protein Recognition: An Analysis by Docking Simulation. NATO ASI Series Series B: Physics, 1994, , 331-337.                                                                               | 0.2  | 0         |
| 111 | The quaternary structure of carbonmonoxy hemoglobin ypsilanti. Proteins: Structure, Function and<br>Bioinformatics, 1993, 15, 1-4.                                                                | 2.6  | 40        |
| 112 | Shared structural motif in proteins. Nature, 1993, 365, 21-21.                                                                                                                                    | 27.8 | 13        |
| 113 | Protein docking algorithms: simulating molecular recognition. Current Opinion in Structural Biology, 1993, 3, 265-269.                                                                            | 5.7  | 121       |
| 114 | Principles of Protein $\hat{a} \in$ " Protein Recognition in Protease-Inhibitor and Antigen-Antibody Complexes. , 1993, , 103-114.                                                                |      | 0         |
| 115 | Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1.<br>Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry, 1992, 31, 5449-5458. | 2.5  | 143       |
| 116 | Crystal packing in six crystal forms of pancreatic ribonuclease. Journal of Molecular Biology, 1992, 228, 243-251.                                                                                | 4.2  | 77        |
| 117 | Crystallization and preliminary X-ray diffraction studies of nucleoside diphosphate kinase from<br>Dictyostelium discoideum. Journal of Molecular Biology, 1991, 217, 239-240.                    | 4.2  | 12        |
| 118 | Protein-protein recognition analyzed by docking simulation. Proteins: Structure, Function and Bioinformatics, 1991, 11, 271-280.                                                                  | 2.6  | 147       |
| 119 | Proteinâ€Protein Interaction: An Analysis by Computer Simulation. Novartis Foundation Symposium, 1991, 161, 237-259.                                                                              | 1.1  | 2         |
| 120 | The price of lost freedom: entropy of bimolecular complex formation. Protein Engineering, Design and Selection, 1989, 3, 1-3.                                                                     | 2.1  | 312       |
| 121 | Structural analysis of the 2.8 Ã model of xylose isomerase fromActinoplanes missouriensis. Proteins:<br>Structure, Function and Bioinformatics, 1988, 4, 165-172.                                 | 2.6  | 57        |
| 122 | Surface, subunit interfaces and interior of oligomeric proteins. Journal of Molecular Biology, 1988, 204, 155-164.                                                                                | 4.2  | 643       |
| 123 | Interior and surface of monomeric proteins. Journal of Molecular Biology, 1987, 196, 641-656.                                                                                                     | 4.2  | 873       |
| 124 | Computer studies of interactions between macromolecules. Progress in Biophysics and Molecular<br>Biology, 1987, 49, 29-63.                                                                        | 2.9  | 45        |
| 125 | The accessible surface area and stability of oligomeric proteins. Nature, 1987, 328, 834-836.                                                                                                     | 27.8 | 346       |
| 126 | Reaction pathway for the quaternary structure change in hemoglobin. Biopolymers, 1985, 24, 509-526.                                                                                               | 2.4  | 46        |

Joel Janin

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Domains in proteins: Definitions, location, and structural principles. Methods in Enzymology, 1985, 115, 420-430.                                                                      | 1.0  | 63        |
| 128 | Haemoglobin: The surface buried between the α1β1 and α2β2 dimers in the deoxy and oxy structures. Journal of Molecular Biology, 1985, 183, 267-270.                                    | 4.2  | 46        |
| 129 | Structure and stability of proteins: The role of solvent. Colloids and Surfaces, 1984, 10, 1-7.                                                                                        | 0.9  | 6         |
| 130 | Structural domains in proteins and their role in the dynamics of protein function. Progress in Biophysics and Molecular Biology, 1983, 42, 21-78.                                      | 2.9  | 267       |
| 131 | Orthogonal packing of .betapleated sheets in proteins. Biochemistry, 1982, 21, 3955-3965.                                                                                              | 2.5  | 147       |
| 132 | Location of structural domains in proteins. Biochemistry, 1981, 20, 6544-6552.                                                                                                         | 2.5  | 136       |
| 133 | Packing of α-Helices onto β-Pleated sheets and the anatomy of proteins. Journal of Molecular Biology, 1980, 143, 95-128.                                                               | 4.2  | 115       |
| 134 | Surface and inside volumes in globular proteins. Nature, 1979, 277, 491-492.                                                                                                           | 27.8 | 689       |
| 135 | Role of hydrophobicity in the binding of coenzymes. Biochemistry, 1978, 17, 2943-2948.                                                                                                 | 2.5  | 140       |
| 136 | Computer analysis of protein-protein interaction. Journal of Molecular Biology, 1978, 124, 323-342.                                                                                    | 4.2  | 260       |
| 137 | Conformation of amino acid side-chains in proteins. Journal of Molecular Biology, 1978, 125, 357-386.                                                                                  | 4.2  | 783       |
| 138 | Stability and specificity of protein-protein interactions: The case of the trypsin-trypsin inhibitor complexes. Journal of Molecular Biology, 1976, 100, 197-211.                      | 4.2  | 117       |
| 139 | Surface area of globular proteins. Journal of Molecular Biology, 1976, 105, 13-14.                                                                                                     | 4.2  | 61        |
| 140 | Principles of protein–protein recognition. Nature, 1975, 256, 705-708.                                                                                                                 | 27.8 | 1,016     |
| 141 | Crystallization of E. coli aspartokinase I - homoserine dehydrogenase I. FEBS Letters, 1974, 45, 318-319.                                                                              | 2.8  | 4         |
| 142 | Revised Structure of Aspartokinase I-Homoserine Dehydrogenase I of Escherichia coli K12. Evidence for<br>Four Identical Subunits. FEBS Journal, 1972, 28, 507-519.                     | 0.2  | 96        |
| 143 | The Threonine-Sensitive Homoserine Dehydrogenase and Aspartokinase Activities of Escherichia coli K<br>12. A Study of the Allosteric Equilibrium. FEBS Journal, 1969, 11, 520-529.     | 0.2  | 60        |
| 144 | The Threonine-Sensitive Homoserine Dehydrogenase and Aspartokinase Activities of Escherichia coli K<br>12. Relaxations of the Allosteric Equilibrium. FEBS Journal, 1969, 11, 530-540. | 0.2  | 37        |