## Myung Soo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11421476/publications.pdf

Version: 2024-02-01

| 57       | 1,191          | 17 h-index   | 32                  |
|----------|----------------|--------------|---------------------|
| papers   | citations      |              | g-index             |
| 60       | 60             | 60           | 1362 citing authors |
| all docs | docs citations | times ranked |                     |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€5torage Systems. Advanced Materials, 2021, 33, e2004902.                               | 21.0 | 42        |
| 2  | Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress. Sustainability, 2021, 13, 4367.                                                             | 3.2  | 4         |
| 3  | Different patterns of belowground fungal diversity along altitudinal gradients with respect to microhabitat and guild types. Environmental Microbiology Reports, 2021, 13, 649-658. | 2.4  | 8         |
| 4  | The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus, 2021, 12, 13.                                | 3.8  | 18        |
| 5  | Determination of Diversity, Distribution and Host Specificity of Korean <i>Laccaria</i> Using Four Approaches. Mycobiology, 2021, 49, 461-468.                                      | 1.7  | O         |
| 6  | Taxonomic Revision of the Genus <i>Lactifluus</i> (Russulales, Basidiomycota) of South Korea.<br>Mycobiology, 2021, 49, 308-345.                                                    | 1.7  | 1         |
| 7  | Four Unrecorded <i>Aspergillus</i> Species from the Rhizosphere Soil in South Korea. Mycobiology, 2021, 49, 346-354.                                                                | 1.7  | 3         |
| 8  | Investigation of the Fungal Diversity of the Federated States of Micronesia and the Construction of an Updated Fungal Inventory. Mycobiology, 2021, 49, 551-558.                    | 1.7  | 1         |
| 9  | Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Frontiers in Microbiology, 2020, 11, 574146.                                 | 3.5  | 10        |
| 10 | <i>Penicillium</i> from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea.<br>Mycobiology, 2020, 48, 431-442.                                                 | 1.7  | 14        |
| 11 | Taxonomic Study of the Genus <i>Pholiota</i> (Strophariaceae, Basidiomycota) in Korea. Mycobiology, 2020, 48, 476-483.                                                              | 1.7  | 9         |
| 12 | Two New Species of <i>Laccaria</i> (Agaricales, Basidiomycota) from Korea. Mycobiology, 2020, 48, 288-295.                                                                          | 1.7  | 7         |
| 13 | New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia.<br>Mycobiology, 2020, 48, 95-103.                                                | 1.7  | 8         |
| 14 | Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees. Sustainability, 2020, 12, 2535.                 | 3.2  | 11        |
| 15 | Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. Sustainability, 2020, 12, 4327.                        | 3.2  | 10        |
| 16 | Seventeen Unrecorded Species from Gayasan National Park in Korea. Mycobiology, 2020, 48, 184-194.                                                                                   | 1.7  | 1         |
| 17 | Taxonomic revision of Russula subsection Amoeninae from South Korea. MycoKeys, 2020, 75, 1-29.                                                                                      | 1.9  | 11        |
| 18 | Co-occurrence patterns of wood-decaying fungi and ants in dead pines of South Korea. Journal of Asia-Pacific Entomology, 2019, 22, 1154-1160.                                       | 0.9  | 8         |

| #  | Article                                                                                                                                                                                             | IF        | Citations    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 19 | Macrolepiota in Korea: New Records and a New Species. Mycobiology, 2019, 47, 368-377.                                                                                                               | 1.7       | 5            |
| 20 | The diversity and ecological roles of Penicillium in intertidal zones. Scientific Reports, 2019, 9, 13540.                                                                                          | 3.3       | 29           |
| 21 | The Influence of Microfungi on the Mycelial Growth of Ectomycorrhizal Fungus Tricholoma matsutake. Microorganisms, 2019, 7, 169.                                                                    | 3.6       | 8            |
| 22 | Taxonomic revision of the genus Lactarius (Russulales, Basidiomycota) in Korea. Fungal Diversity, 2019, 95, 275-335.                                                                                | 12.3      | 17           |
| 23 | Three Unrecorded Species Belonging toPenicilliumSectionSclerotiorafrom Marine Environments in Korea. Mycobiology, 2019, 47, 165-172.                                                                | 1.7       | 7            |
| 24 | Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity, 2019, 95, 1-273.                                                        | 12.3      | 203          |
| 25 | Fungal Diversity and Enzyme Activity Associated with the Macroalgae, <i>Agarum clathratum</i> Mycobiology, 2019, 47, 50-58.                                                                         | 1.7       | 15           |
| 26 | Cellulosic Nanomaterial Production Via Fermentation by Komagataeibacter sp. SFCB22-18 Isolated from Ripened Persimmons. Journal of Microbiology and Biotechnology, 2019, 29, 617-624.               | 2.1       | 4            |
| 27 | Diversity of fungi associated with roots of Calanthe orchid species in Korea. Journal of Microbiology, 2018, 56, 49-55.                                                                             | 2.8       | 7            |
| 28 | Sclerotium rolfsii causes stem rot on Ixeridium dentatum in Korea. Australasian Plant Disease Notes, 2018, 13, 1.                                                                                   | 0.7       | 0            |
| 29 | Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS ONE, 2018, 13, e0205900.                        | 2.5       | 18           |
| 30 | A systematic revision of the ectomycorrhizal genus <i>Laccaria</i> from Korea. Mycologia, 2018, 110, 948-961.                                                                                       | 1.9       | 25           |
| 31 | New Report of Three Unrecorded Species in <i>Trichoderma harzianum</i> Species Complex in Korea.<br>Mycobiology, 2018, 46, 177-184.                                                                 | 1.7       | 10           |
| 32 | Reâ€evaluation of <i>Armillaria</i> and <i>Desarmillaria</i> in South Korea based on <scp>ITS</scp> / <i>tef</i> 1 sequences and morphological characteristics. Forest Pathology, 2018, 48, e12447. | 1.1       | 11           |
| 33 | First Report of Two <i>Colletotrichum</i> Species Associated with Bitter Rot on Apple Fruit in Korea – <i>C. fructicola</i> and <i>C. siamense</i> . Mycobiology, 2018, 46, 154-158.                | 1.7       | 23           |
| 34 | First Report of Eight Milkcap Species Belonging toLactariusandLactifluusin Korea. Mycobiology, 2018, 46, 1-12.                                                                                      | 1.7       | 13           |
| 35 | Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales,) Tj ETQq $1\ 1\ 0.784314$ rg                                                                                | gBT/Overl | ock 10 Tf 50 |
| 36 | Taxonomic evaluation of selected <i>Ganoderma</i> species and database sequence validation. PeerJ, 2017, 5, e3596.                                                                                  | 2.0       | 44           |

| #  | Article                                                                                                                                                                                    | IF         | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 37 | Ten New Recorded Species of Macrofungi on Ulleung Island, Korea. Mycobiology, 2017, 45, 286-296.                                                                                           | 1.7        | 8             |
| 38 | Evaluation of resistance to Pierce's disease among grapevine cultivars by using the culture filtrates produced from Xylella fastidiosa. Journal of Plant Biotechnology, 2017, 44, 394-400. | 0.4        | 1             |
| 39 | Diversity of Marine-Derived i>Aspergillus / i> from Tidal Mudflats and Sea Sand in Korea. Mycobiology, 2016, 44, 237-247.                                                                  | 1.7        | 25            |
| 40 | Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea. Mycobiology, 2016, 44, 146-154.                                                                                      | 1.7        | 4             |
| 41 | Seven New Recorded Species in Five Genera of the Strophariaceae in Korea. Mycobiology, 2016, 44, 137-145.                                                                                  | 1.7        | 7             |
| 42 | Lactarius cucurbitoides (Russulales, Basidiomycota), a new species from South Korea supported by molecular and morphological data. Phytotaxa, 2015, 205, 168.                              | 0.3        | 12            |
| 43 | Four New Species of <i>Amanita</i> in Inje County, Korea. Mycobiology, 2015, 43, 408-414.                                                                                                  | 1.7        | 10            |
| 44 | Taxonomic Study of the Genus <i>Abundisporus</i> in Korea. Mycobiology, 2015, 43, 225-230.                                                                                                 | 1.7        | 4             |
| 45 | A Checklist of the Basidiomycetous Macrofungi and a Record of Five New Species from Mt. Oseo in Korea. Mycobiology, 2014, 42, 132-139.                                                     | 1.7        | 7             |
| 46 | A New Record of <i>Penicillium </i> antarcticum from Marine Environments in Korea. Mycobiology, 2014, 42, 109-113.                                                                         | 1.7        | 13            |
| 47 | Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma) Tj ETQq $1\ 1\ 0.7843$                                                                           | 14 rgBT /C | Overlock 10 T |
| 48 | Re-evaluation of the Genus <i>Antrodia</i> (Polyporales, Basidiomycota) in Korea. Mycobiology, 2014, 42, 114-119.                                                                          | 1.7        | 6             |
| 49 | Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van<br>Leeuwenhoek, 2014, 106, 331-345.                                                | 1.7        | 34            |
| 50 | Delimitation of <i>Russula</i> Subgenus <i>Amoenula</i> in Korea Using Three Molecular Markers.<br>Mycobiology, 2013, 41, 191-201.                                                         | 1.7        | 42            |
| 51 | Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata.<br>Mycological Progress, 2012, 11, 799-815.                                                  | 1.4        | 57            |
| 52 | Ulocladium systematics revisited: phylogeny and taxonomic status. Mycological Progress, 2009, 8, 35-47.                                                                                    | 1.4        | 36            |
| 53 | A re-examination of the phylogenetic relationship between the causal agents of carrot black rot, <i>Alternaria radicina</i> and <i>A. carotiincultae</i> . Mycologia, 2008, 100, 511-527.  | 1.9        | 28            |
| 54 | Two New Species of <i>Trichoderma </i> Associated with Green Mold of Oyster Mushroom Cultivation in Korea. Mycobiology, 2006, 34, 111.                                                     | 1.7        | 82            |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dominance of LysobacterÂsp. in the rhizosphere of two coastal sand dune plant species,<br>CalystegiaÂsoldanella and ElymusÂmollis. Antonie Van Leeuwenhoek, 2006, 90, 19-27.                                     | 1.7 | 31        |
| 56 | Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 433-438. | 1.7 | 96        |
| 57 | Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. Journal of Microbiology, 2005, 43, 219-27.                                      | 2.8 | 48        |