
Cheng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11418312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic DNA for Cell Surface Engineering: Experimental Comparison between Click Conjugation and Lipid Insertion in Terms of Cell Viability, Engineering Efficiency, and Displaying Stability. ACS Applied Materials & Interfaces, 2022, 14, 3900-3909.	8.0	10
2	Genomic and experimental evidence that ALKATI does not predict single agent sensitivity to ALK inhibitors. IScience, 2021, 24, 103343.	4.1	3
3	Fibrinogen and Fibrin Differentially Regulate the Local Hydrodynamic Environment in Neutrophil–Tumor Cell–Endothelial Cell Adhesion System. Applied Sciences (Switzerland), 2021, 11, 79.	2.5	0
4	Phototherapy and optical waveguides for the treatment of infection. Advanced Drug Delivery Reviews, 2021, 179, 114036.	13.7	26
5	High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioactive Materials, 2020, 5, 624-635.	15.6	34
6	Inâ€Situ Synthesis of an Aptamerâ€Based Polyvalent Antibody Mimic on the Cell Surface for Enhanced Interactions between Immune and Cancer Cells. Angewandte Chemie, 2020, 132, 11990-11995.	2.0	6
7	Bone Composites: Citrateâ€Based Tanninâ€Bridged Bone Composites for Lumbar Fusion (Adv. Funct. Mater.) Tj	ЕТ <u>Q</u> 91 1 С).7884314 rgB
8	Citrateâ€Based Tanninâ€Bridged Bone Composites for Lumbar Fusion. Advanced Functional Materials, 2020, 30, 2002438.	14.9	43
9	Inâ€Situ Synthesis of an Aptamerâ€Based Polyvalent Antibody Mimic on the Cell Surface for Enhanced Interactions between Immune and Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 11892-11897.	13.8	57
10	Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration. Acta Biomaterialia, 2019, 93, 180-191.	8.3	18
11	The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials, 2018, 178, 504-516.	11.4	31
12	From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology. Advances in Experimental Medicine and Biology, 2018, 1092, 113-138.	1.6	19
13	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	5.2	14
14	Drug Delivery: Immune Cellâ€Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery (Small 10/2017). Small, 2017, 13, .	10.0	0
15	VE-Cadherin Disassembly and Cell Contractility in the Endothelium are Necessary for Barrier Disruption Induced by Tumor Cells. Scientific Reports, 2017, 7, 45835.	3.3	43
16	Immune Cellâ€Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery. Small, 2017, 13, 1603121.	10.0	63
17	The use of nanoparticulates to treat breast cancer. Nanomedicine, 2017, 12, 2367-2388.	3.3	74
18	CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation. Oncogene, 2016, 35, 5056-5069.	5.9	32

#	Article	IF	CITATIONS
19	Mutant B-Raf(V600E) Promotes Melanoma Paracellular Transmigration by Inducing Thrombin-mediated Endothelial Junction Breakdown. Journal of Biological Chemistry, 2016, 291, 2087-2106.	3.4	10
20	Regulation of fibrin-mediated tumor cell adhesion to the endothelium using anti-thrombin aptamer. Experimental Cell Research, 2015, 339, 417-426.	2.6	6
21	A Drosera-bioinspired hydrogel for catching and killing cancer cells. Scientific Reports, 2015, 5, 14297.	3.3	24
22	C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation. Scientific Reports, 2015, 5, 9275.	3.3	21
23	Cyclovirobuxine D Inhibits Cell Proliferation and Induces Mitochondria-Mediated Apoptosis in Human Gastric Cancer Cells. Molecules, 2015, 20, 20659-20668.	3.8	13
24	Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion. PLoS ONE, 2015, 10, e0136926.	2.5	7
25	Lysosomal Degradation of CD44 Mediates Ceramide Nanoliposome-induced Anoikis and Diminished Extravasation in Metastatic Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 8632-8643.	3.4	14
26	3D numerical study of tumor blood perfusion and oxygen transport during vascular normalization. Applied Mathematics and Mechanics (English Edition), 2015, 36, 153-162.	3.6	1
27	Perspectives: Interplay Between Melanoma Regulated Fibrin and Receptor Mediated Adhesion Under Shear Flow. Cellular and Molecular Bioengineering, 2015, 8, 86-95.	2.1	2
28	Multi-scale biological and physical modelling of the tumour micro-environment. Drug Discovery Today: Disease Models, 2015, 16, 7-15.	1.2	1
29	RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly. Biochemical and Biophysical Research Communications, 2015, 459, 1-9.	2.1	14
30	Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomaterials Science and Engineering, 2015, 1, 201-217.	5.2	146
31	Aptamer-Based Polyvalent Ligands for Regulated Cell Attachment on the Hydrogel Surface. Biomacromolecules, 2015, 16, 1382-1389.	5.4	29
32	Micro-PIV measurements of the flow field around cells in flow chamber. Journal of Hydrodynamics, 2015, 27, 562-568.	3.2	3
33	Actinomyosin Contraction, Phosphorylation of VE-Cadherin, and Actin Remodeling Enable Melanoma-Induced Endothelial Cell-Cell Junction Disassembly. PLoS ONE, 2014, 9, e108092.	2.5	14
34	CD44 variant, but not standard CD44 isoforms, mediate disassembly of endothelial VE adherin junction on metastatic melanoma cells. FEBS Letters, 2014, 588, 4573-4582.	2.8	23
35	Nuclear Stiffening Inhibits Migration of Invasive Melanoma Cells. Cellular and Molecular Bioengineering, 2014, 7, 544-551.	2.1	34
36	Melanoma upregulates ICAMâ€1 expression on endothelial cells through engagement of tumor CD44 with endothelial Eâ€selectin and activation of a PKCα–p38â€SPâ€1 pathway. FASEB Journal, 2014, 28, 4591-4	4609 ⁵ .	42

3

#	Article	IF	CITATIONS
37	A noninvasive approach to determine viscoelastic properties of an individual adherent cell under fluid flow. Journal of Biomechanics, 2014, 47, 1537-1541.	2.1	14
38	Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow. Biochemical and Biophysical Research Communications, 2013, 431, 718-723.	2.1	16
39	Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions. American Journal of Physiology - Cell Physiology, 2012, 302, C1189-C1201.	4.6	18
40	Cellular and Molecular Bioengineering: A Tipping Point. Cellular and Molecular Bioengineering, 2012, 5, 239-253.	2.1	3
41	Study of Local Hydrodynamic Environment in Cell-Substrate Adhesion Using Side-View μPIV Technology. PLoS ONE, 2012, 7, e30721.	2.5	8
42	Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation. Cellular and Molecular Bioengineering, 2012, 5, 165-172.	2.1	6
43	3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments. MCB Molecular and Cellular Biomechanics, 2012, 9, 95-125.	0.7	1
44	The effect of cell shape on local hydrodynamic environment. , 2011, , .		0
45	Modeling of Cell Aggregation Dynamics Governed by Receptor–Ligand Binding Under Shear Flow. Cellular and Molecular Bioengineering, 2011, 4, 427-441.	2.1	8
46	Model Simulations Reveal VCAM-1 Augment PAK Activation Rates to Amplify p38 MAPK and VE-Cadherin Phosphorylation. Cellular and Molecular Bioengineering, 2011, 4, 656-669.	2.1	4
47	Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*. Journal of Biological Chemistry, 2011, 286, 34777-34787.	3.4	31
48	Sequential Binding of αvβ3 and ICAM-1 Determines Fibrin-Mediated Melanoma Capture and Stable Adhesion to CD11b/CD18 on Neutrophils. Journal of Immunology, 2011, 186, 242-254.	0.8	48
49	Application of Population Dynamics to Study Heterotypic Cell Aggregations in the Near-Wall Region of a Shear Flow. Cellular and Molecular Bioengineering, 2010, 3, 3-19.	2.1	9
50	Transiently Entrapped Circulating Tumor Cells Interact with Neutrophils to Facilitate Lung Metastasis Development. Cancer Research, 2010, 70, 6071-6082.	0.9	300
51	p38 MAP kinase is necessary for melanoma-mediated regulation of VE-cadherin disassembly. American Journal of Physiology - Cell Physiology, 2010, 298, C1140-C1150.	4.6	32
52	Adhesion and Signaling of Tumor Cells to Leukocytes and Endothelium in Cancer Metastasis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 477-521.	1.0	2
53	Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow. Biophysical Journal, 2010, 99, 2812-2820.	0.5	22
54	Tumor cell extravasation mediated by leukocyte adhesion is shear rate dependent on IL-8 signaling. MCB Molecular and Cellular Biomechanics, 2010, 7, 77-91.	0.7	15

#	Article	IF	CITATIONS
55	Biomechanics: Cell Research and Applications for the Next Decade. Annals of Biomedical Engineering, 2009, 37, 847-859.	2.5	169
56	Systemic Analysis of Tumor Cell-Induced Endothelial Calcium Signaling and Junction Disassembly. Cellular and Molecular Bioengineering, 2009, 2, 375-385.	2.1	12
57	Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab on A Chip, 2009, 9, 1583.	6.0	185
58	The role of fibrin as a ligand for ICAM-1 and PMN in melanoma adhesion under different shear conditions , 2009, , .		0
59	Effects of the Tumor-Leukocyte Microenvironment on Melanoma–Neutrophil Adhesion to the Endothelium in a Shear Flow. Cellular and Molecular Bioengineering, 2008, 1, 189-200.	2.1	25
60	Hydrodynamic Shear Rate Regulates Melanoma-Leukocyte Aggregation, Melanoma Adhesion to the Endothelium, and Subsequent Extravasation. Annals of Biomedical Engineering, 2008, 36, 661-671.	2.5	72
61	Integrin VLA-4 enhances sialyl-Lewis ^{x/a} -negative melanoma adhesion to and extravasation through the endothelium under low flow conditions. American Journal of Physiology - Cell Physiology, 2008, 295, C701-C707.	4.6	51
62	Two-dimensional kinetics of β ₂ -integrin and ICAM-1 bindings between neutrophils and melanoma cells in a shear flow. American Journal of Physiology - Cell Physiology, 2008, 294, C743-C753.	4.6	40
63	Targeting Mutant V600E Bâ€Raf in Melanoma Interrupts Immunoediting of Leukocyte Functions and Melanoma Extravasation. FASEB Journal, 2008, 22, 1079.23.	0.5	Ο
64	Targeting Mutant (V600E) B-Raf in Melanoma Interrupts Immunoediting of Leukocyte Functions and Melanoma Extravasation. Cancer Research, 2007, 67, 5814-5820.	0.9	82
65	Cellular Mechanics and Biology of Tumor Cell-Leukocyte Interactions in the Near Wall Region Under Shear Flow Conditions. , 2007, , 371.		Ο
66	Regulation of interleukin-8 expression in melanoma-stimulated neutrophil inflammatory response. Experimental Cell Research, 2007, 313, 551-559.	2.6	71
67	Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies. Journal of Biomechanical Engineering, 2006, 128, 271-278.	1.3	32
68	Targeting Mitogen-Activated Protein Kinase/Extracellular Signal–Regulated Kinase Kinase in the Mutant (V600E) B-Raf Signaling Cascade Effectively Inhibits Melanoma Lung Metastases. Cancer Research, 2006, 66, 8200-8209.	0.9	108
69	Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences and Engineering, 2006, 3, 683-696.	1.9	12
70	Kinetics analysis of binding between melanoma cells and neutrophils. MCB Molecular and Cellular Biomechanics, 2006, 3, 79-87.	0.7	18
71	Micromechanics of tumor cell adhesion and migration under dynamic flow conditions. Frontiers in Bioscience - Landmark, 2005, 10, 379.	3.0	25
72	Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. American Journal of Physiology - Cell Physiology, 2005, 288, C831-C839.	4.6	79

#	Article	IF	CITATIONS
73	Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Experimental Cell Research, 2005, 310, 282-292.	2.6	68
74	Involvement of phospholipase C signaling in melanoma cell-induced endothelial junction disassembly. Frontiers in Bioscience - Landmark, 2005, 10, 1597.	3.0	29
75	Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. MCB Molecular and Cellular Biomechanics, 2005, 2, 145-59.	0.7	55
76	Neutrophils influence melanoma adhesion and migration under flow conditions. International Journal of Cancer, 2003, 106, 713-722.	5.1	92
77	Melanoma cell migration to type IV collagen requires activation of NF-κB. Oncogene, 2003, 22, 98-108.	5.9	42
78	In Vitro Characterization and Micromechanics of Tumor Cell Chemotactic Protrusion, Locomotion, and Extravasation. Annals of Biomedical Engineering, 2002, 30, 344-355.	2.5	35
79	[Ca ²⁺] _i as a potential downregulator of l± ₂ l² ₁ -integrin-mediated A2058 tumor cell migration to type IV collagen. American Journal of Physiology - Cell Physiology, 2001, 281, C106-C113.	4.6	18
80	Extracellular lipid-mediated signaling in tumor-cell activation and pseudopod protrusion. International Journal of Cancer, 2000, 88, 593-600.	5.1	5
81	Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. Journal of Biomechanics, 2000, 33, 35-43.	2.1	210
82	Use of Green Fluorescent Protein-Conjugated β-Actin as a Novel Molecular Marker for in Vitro Tumor Cell Chemotaxis Assay. Biotechnology Progress, 2000, 16, 1106-1114.	2.6	10
83	Mechanics of Leukocyte Deformation and Adhesion to Endothelium in Shear Flow. Annals of Biomedical Engineering, 1999, 27, 298-312.	2.5	142
84	Application of the Dual-Micropipet Technique to the Measurement of Tumor Cell Locomotion. Experimental Cell Research, 1999, 248, 160-171.	2.6	28
85	In VitroSide-View Imaging Technique and Analysis of Human T-Leukemic Cell Adhesion to ICAM-1 in Shear Flow. Microvascular Research, 1998, 55, 124-137.	2.5	54
86	Development of a side-view chamber for studying cell-surface adhesion under flow conditions. Annals of Biomedical Engineering, 1997, 25, 573-580.	2.5	40
87	Responses of tumor cell pseudopod protrusion to changes in medium osmolality. , 1996, 167, 156-163.		13
88	Two Phases of Pseudopod Protrusion in Tumor Cells Revealed by a Micropipette. Microvascular Research, 1994, 47, 55-67.	2.5	40
89	Leukocyte deformability: Finite element modeling of large viscoelastic deformation. Journal of Theoretical Biology, 1992, 158, 173-193.	1.7	76
90	Cytoplasmic rheology of passive neutrophils. Biorheology, 1991, 28, 557-567.	0.4	129

#	Article	IF	CITATIONS
91	Passive Deformations and Active Motions of Leukocytes. Journal of Biomechanical Engineering, 1990, 112, 295-302.	1.3	27
92	Passive Deformation Analysis of Human Leukocytes. Journal of Biomechanical Engineering, 1988, 110, 27-36.	1.3	170