Jacob D Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11417076/publications.pdf

Version: 2024-02-01

567281 677142 22 976 15 22 h-index g-index citations papers 22 22 22 1662 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malaria Journal, 2016, 15, 456.	2.3	47
2	Alkyl phenols, alkenyl cyclohexenones and other phytochemical constituents from Lannea rivae (chiov) Sacleux (Anacardiaceae) and their bioactivity. Medicinal Chemistry Research, 2016, 25, 690-703.	2.4	15
3	Assessment of the Worldwide Antimalarial Resistance Network Standardized Procedure for <i>In Vitro</i> Malaria Drug Sensitivity Testing Using SYBR Green Assay for Field Samples with Various Initial Parasitemia Levels. Antimicrobial Agents and Chemotherapy, 2016, 60, 2417-2424.	3.2	21
4	Molecular Characterization of the CytochromebGene andIn VitroAtovaquone Susceptibility of Plasmodium falciparum Isolates from Kenya. Antimicrobial Agents and Chemotherapy, 2015, 59, 1818-1821.	3.2	7
5	Five-year tracking of Plasmodium falciparum allele frequencies in a holoendemic area with indistinct seasonal transitions. Journal of Multidisciplinary Healthcare, 2014, 7, 515.	2.7	4
6	Polymorphisms in Pf <i>mdr1</i> , Pf <i>crt</i> , and Pf <i>nhe1</i> Genes Are Associated with Reduced <i>In Vitro</i> Activities of Quinine in Plasmodium falciparum Isolates from Western Kenya. Antimicrobial Agents and Chemotherapy, 2014, 58, 3737-3743.	3.2	20
7	The use of a prodrug approach to minimize potential CNS exposure of next generation quinoline methanols while maintaining efficacy in in vivo animal models. European Journal of Drug Metabolism and Pharmacokinetics, 2014, 39, 231-236.	1.6	3
8	Direct comparison of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I fluorescence (MSF) drug sensitivity tests in Plasmodium falciparum reference clones and fresh ex vivo field isolates from Cambodia. Malaria Journal, 2013, 12, 239.	2.3	26
9	A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs. Malaria Journal, 2013, 12, 450.	2.3	26
10	High-Throughput Analysis of Antimalarial Susceptibility Data by the WorldWide Antimalarial Resistance Network (WWARN) <i>In Vitro</i> Analysis and Reporting Tool. Antimicrobial Agents and Chemotherapy, 2013, 57, 3121-3130.	3.2	36
11	The Role of Pfmdr1 and Pfcrt in Changing Chloroquine, Amodiaquine, Mefloquine and Lumefantrine Susceptibility in Western-Kenya P. falciparum Samples during 2008–2011. PLoS ONE, 2013, 8, e64299.	2.5	75
12	The antiplasmodial and radical scavenging activities of flavonoids of Erythrina burttii. Acta Tropica, 2012, 123, 123-127.	2.0	30
13	Inhibitory Activity of Ferroquine, versus Chloroquine, against Western Kenya Plasmodium falciparum Field Isolates Determined by a SYBR Green I In Vitro Assay. American Journal of Tropical Medicine and Hygiene, 2011, 85, 984-988.	1.4	4
14	Antimalarial Drug Sensitivity Profile of Western Kenya Plasmodium falciparum Field Isolates Determined by a SYBR Green I in vitro Assay and Molecular Analysis. American Journal of Tropical Medicine and Hygiene, 2011, 85, 34-41.	1.4	47
15	Use of the NP-40 Detergent-Mediated Assay in Discovery of Inhibitors of Î ² -Hematin Crystallization. Antimicrobial Agents and Chemotherapy, 2011, 55, 3363-3369.	3.2	84
16	<i>Lactococcus lactis fabH</i> , Encoding \hat{I}^2 -Ketoacyl-Acyl Carrier Protein Synthase, Can Be Functionally Replaced by the <i>Plasmodium falciparum</i> Congener. Applied and Environmental Microbiology, 2010, 76, 3959-3966.	3.1	5
17	Assessment of Malaria In Vitro Drug Combination Screening and Mixed-Strain Infections Using the Malaria Sybr Green I-Based Fluorescence Assay. Antimicrobial Agents and Chemotherapy, 2009, 53, 2557-2563.	3.2	36
18	Targeting the Fatty Acid Biosynthesis Enzyme, β-Ketoacylâ^'Acyl Carrier Protein Synthase III (PfKASIII), in the Identification of Novel Antimalarial Agents. Journal of Medicinal Chemistry, 2009, 52, 952-963.	6.4	40

#	Article	IF	CITATIONS
19	Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening. Antimicrobial Agents and Chemotherapy, 2007, 51, 1926-1933.	3.2	290
20	Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochemical Journal, 2004, 378, 539-547.	3.7	94
21	CD44, \hat{l}_{\pm} 4integrin, and fucoidin receptor-mediated phagocytosis of apoptotic leukocytes. Journal of Leukocyte Biology, 2003, 74, 810-820.	3.3	13
22	Human and Murine High Endothelial Venule Cells Phagocytose Apoptotic Leukocytes. Experimental Cell Research, 1997, 236, 404-411.	2.6	53