Cem Sarica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11414092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of high oil viscosity on oilâ€gas downward flow in deviated pipes. Part 2: Holdup and pressure gradient. Canadian Journal of Chemical Engineering, 2021, , .	1.7	1
2	Effects of high oil viscosity on oilâ€gas downward flow in deviated pipes. Part 1: Experimental setup and flow pattern transitions. Canadian Journal of Chemical Engineering, 2021, , .	1.7	1
3	Thermal methods in flow assurance: A review. Journal of Natural Gas Science and Engineering, 2021, 88, 103798.	4.4	29
4	Experimental Investigation of active heating in removal of wax deposits. Journal of Petroleum Science and Engineering, 2021, 200, 108346.	4.2	22
5	Comprehensive Fall Velocity Study on Continuous Flow Plungers. SPE Production and Operations, 2021, 36, 604-623.	0.6	4
6	Signal processing for slug flow analysis via a voltage or instantaneous liquid holdup time-series. Flow Measurement and Instrumentation, 2021, 79, 101968.	2.0	8
7	Dynamic Microscopic Study of Wax Deposition: Particulate Deposition. Energy & Fuels, 2021, 35, 12065-12074.	5.1	19
8	Signal processing for slug flow analysis: MATLAB algorithm. MethodsX, 2021, 8, 101546.	1.6	1
9	Experimental study of pseudo-slug flow in upward inclined pipes. Journal of Natural Gas Science and Engineering, 2020, 75, 103147.	4.4	22
10	Comprehensive Fall Velocity Study on Continuous Flow Plungers. , 2020, , .		1
11	Wax deposition mechanisms: Is the current description sufficient?. Fuel, 2020, 275, 117937.	6.4	52
12	Experimental study using advanced diagnostics to investigate slug aeration and bubble behavior in high liquid viscosity horizontal slug flow. Journal of Petroleum Science and Engineering, 2020, 191, 107202.	4.2	11
13	Modeling pseudo-slugs liquid holdup in slightly upward inclined pipes. Journal of Petroleum Science and Engineering, 2020, 194, 107564.	4.2	9
14	Modeling Liquid Holdup in Pseudo-Slugs. , 2020, , .		0
15	An Experimental Investigation of a Highly Deviated Shroud Type Downhole Separators. , 2020, , .		5
16	Effects of high oil viscosity on oil-gas upward flow behavior in deviated pipes. Experimental Thermal and Fluid Science, 2019, 109, 109896.	2.7	16
17	Pressure Effects on Low-Liquid-Loading Oil/Gas Flow in Slightly Upward Inclined Pipes: Flow Pattern, Pressure Gradient, and Liquid Holdup. SPE Journal, 2019, 24, 2221-2238.	3.1	15
18	Influence of operating temperatures on long-duration wax deposition in flow lines. Journal of Petroleum Science and Engineering, 2019, 183, 106373.	4.2	29

#	Article	IF	CITATIONS
19	Selection of Optimal Closure Relationships for Multiphase Flow using a Genetic Algorithm. , 2019, , .		0
20	A new objective and distribution-based method to characterize pseudo-slug flow from wire-mesh-sensors (WMS) data. Experimental Thermal and Fluid Science, 2019, 109, 109855.	2.7	17
21	Experimental investigation of two-phase gas-oil stratified flow wax deposition in pipeline. Fuel, 2019, 247, 113-125.	6.4	47
22	Analysis of flow pattern transition from segregated to slug flow in upward inclined pipes. International Journal of Multiphase Flow, 2019, 115, 19-39.	3.4	25
23	A Critical Review of Controlling Paraffin Deposition in Production Lines Using Chemicals. Energy & Fuels, 2019, 33, 2797-2809.	5.1	57
24	Analogous behavior of pseudo-slug and churn flows in high viscosity liquid system and upward inclined pipes. International Journal of Multiphase Flow, 2018, 103, 61-77.	3.4	32
25	A model for the thin film friction factor in near-horizontal stratified-annular transition two-phase low liquid loading flow. International Journal of Multiphase Flow, 2018, 102, 29-37.	3.4	13
26	Settling and reâ€entrainment of wax particles in nearâ€gelling systems. AICHE Journal, 2018, 64, 765-772.	3.6	9
27	A Simplified Model for Steady-State Pseudo-Slug Flow. , 2018, , .		5
28	Liquid droplet entrainment in two-phase oil-gas low-liquid-loading flow in horizontal pipes at high pressure. International Journal of Multiphase Flow, 2018, 99, 383-396.	3.4	10
29	Effects of High Pressure on the Performance of Existing Two-Phase Flow Models in Wellbores. , 2018, ,		2
30	A unit cell model for gas-liquid pseudo-slug flow in pipes. Journal of Natural Gas Science and Engineering, 2018, 60, 125-143.	4.4	23
31	Onset of Liquid-Film Reversal In Upward-Inclined Pipes. SPE Journal, 2018, 23, 1630-1647.	3.1	36
32	Analysis of roll wave characteristics under low liquid loading twoâ€phase flow conditions. AICHE Journal, 2017, 63, 3177-3186.	3.6	2
33	A model ranking and uncertainty propagation approach for improving confidence in solids transport model predictions. Journal of Petroleum Science and Engineering, 2017, 151, 128-142.	4.2	1
34	A Mini Pilot-Scale Flow Loop Experimental Study of Turbulent Flow Wax Deposition by Using a Natural Gas Condensate. Energy & Fuels, 2017, 31, 2457-2478.	5.1	12
35	Effect of the Flow Field on the Wax Deposition and Performance of Wax Inhibitors: Cold Finger and Flow Loop Testing. Energy & Fuels, 2017, 31, 4915-4924.	5.1	95
36	Effect of Surfactant (Foamer) Delivery Location on Horizontal Wells Deliquification. , 2017, , .		2

#	Article	IF	CITATIONS
37	Pressure Effects on Pressure Gradient and Liquid Holdup in Two-Phase Oil-Gas Low-Liquid-Loading Flow in Horizontal Pipes. , 2017, , .		7
38	Experimental Study of Paraffin Deposition Under Two-Phase Gas/Oil Slug Flow in Horizontal Pipes. SPE Production and Operations, 2017, 32, 99-117.	0.6	9
39	Validation of wax deposition models with recent laboratory scale flow loop experimental data. Journal of Petroleum Science and Engineering, 2017, 149, 351-366.	4.2	29
40	Droplet entrainment analysis of three-phase low liquid loading flow. International Journal of Multiphase Flow, 2017, 89, 45-56.	3.4	19
41	Effects of monoethylene glycol (MEG) on three-phase flow characteristics in near-horizontal pipes. Journal of Petroleum Science and Engineering, 2017, 149, 834-843.	4.2	6
42	Identification of Optimum Closure Relationships for a Mechanistic Model Using a Data Set From a Low-Liquid Loading Subsea Pipeline. , 2017, , .		2
43	Investigation of inhibitors efficacy in wax deposition mitigation using a laboratory scale flow loop. AICHE Journal, 2016, 62, 4131-4139.	3.6	84
44	Microscopic Study of Wax Inhibition Mechanism. , 2016, , .		9
45	Foam flow in vertical gas wells under liquid loading: Critical velocity and pressure drop prediction. International Journal of Multiphase Flow, 2016, 87, 124-135.	3.4	25
46	Effect of surfactants on liquid loading in vertical wells. International Journal of Multiphase Flow, 2016, 83, 183-201.	3.4	28
47	Experimental Investigation of Three-Phase Low-Liquid-Loading Flow. Oil and Gas Facilities, 2016, 5, 45-56.	0.4	14
48	Threshold velocity to initiate particle motion in horizontal and near-horizontal conduits. Powder Technology, 2016, 292, 272-289.	4.2	22
49	Microscopic Study of Wax Deposition: Mass Transfer Boundary Layer and Deposit Morphology. Energy & Fuels, 2016, 30, 2674-2686.	5.1	34
50	Experimental Study of Drop Size Distribution for Air-Oil Two-Phase Flow in Large Diameter Pipe. , 2015, ,		0
51	Experimental Investigation of Three-Phase Low Liquid Loading Flow. , 2015, , .		4
52	An Experimental Study of Paraffin Deposition under Two-Phase Gas-Oil Slug Flow in Horizontal Pipes. , 2015, , .		17
53	A methodology to quantify the uncertainty in liquid holdup measurements with wire mesh sensor. Flow Measurement and Instrumentation, 2015, 46, 18-24.	2.0	16
54	Refined reconstruction of liquid–gas interface structures for stratified two-phase flow using wire-mesh sensor. Flow Measurement and Instrumentation, 2015, 46, 230-239.	2.0	21

#	Article	IF	CITATIONS
55	Prediction of slug liquid holdup in high viscosity liquid and gas two-phase flow in horizontal pipes. Journal of Petroleum Science and Engineering, 2015, 133, 566-575.	4.2	41
56	On the characteristics of the roll waves in gas–liquid stratified-wavy flow: A two-dimensional perspective. Experimental Thermal and Fluid Science, 2015, 65, 90-102.	2.7	17
57	Unified drift velocity closure relationship for large bubbles rising in stagnant viscous fluids in pipes. Journal of Petroleum Science and Engineering, 2014, 124, 359-366.	4.2	37
58	Solids transport models comparison and fineâ€ŧuning for horizontal, low concentration flow in singleâ€phase carrier fluid. AICHE Journal, 2014, 60, 76-122.	3.6	31
59	Wave characteristics in gas–oil two phase flow and large pipe diameter. International Journal of Multiphase Flow, 2014, 63, 93-104.	3.4	23
60	A New Comprehensive Model for Predicting Liquid Loading in Gas Wells. SPE Production and Operations, 2014, 29, 337-349.	0.6	33
61	Experimental Study of Single-Phase and Two-Phase Water-in-Crude-Oil Dispersed Flow Wax Deposition in a Mini Pilot-Scale Flow Loop. Energy & Fuels, 2013, 27, 5036-5053.	5.1	42
62	Development of a fast transient simulator for gas–liquid two-phase flow in pipes. Journal of Petroleum Science and Engineering, 2013, 102, 27-35.	4.2	31
63	Model parameter fine-tuning and ranking methodology to improve the accuracy of threshold velocity predictions for solid particle transport. Journal of Petroleum Science and Engineering, 2013, 110, 210-224.	4.2	9
64	A Model for Temperature Prediction for Two-Phase Oil/Water Stratified Flow. Journal of Energy Resources Technology, Transactions of the ASME, 2013, 135, .	2.3	13
65	A Mechanistic Slug Liquid Holdup Model for Wide Ranges of Liquid Viscosity and Pipe Inclination Angle. , 2013, , .		5
66	Experimental Study on Wax-Deposition Characteristics of a Waxy Crude Oil Under Single-Phase Turbulent-Flow Conditions. Oil and Gas Facilities, 2013, 2, 61-73.	0.4	16
67	An Efficient Drift-Flux Closure Relationship to Estimate Liquid Holdups of Gas-Liquid Two-Phase Flow in Pipes. Energies, 2012, 5, 5294-5306.	3.1	89
68	Experimental Study on Wax Deposition Characteristics of a Waxy Crude Oil Under Single Phase Turbulent Flow Conditions. , 2012, , .		8
69	Inclination Effects on Flow Characteristics of High Viscosity Oil/Gas Two-Phase Flow. , 2012, , .		10
70	Review of High-Viscosity Oil Multiphase Pipe Flow. Energy & Fuels, 2012, 26, 3979-3985.	5.1	34
71	Review of Paraffin Deposition Research under Multiphase Flow Conditions. Energy & Fuels, 2012, 26, 3968-3978.	5.1	71
72	Modeling of droplet entrainment in co-current annular two-phase flow: A new approach. International Journal of Multiphase Flow, 2012, 39, 21-28.	3.4	39

#	Article	IF	CITATIONS
73	Flow Assurance: Validation of Wax Deposition Models Using Field Data from a Subsea Pipeline. , 2011, , .		25
74	Modeling of oil–water flow using energy minimization concept. International Journal of Multiphase Flow, 2011, 37, 326-335.	3.4	21
75	Low liquid loading gas/liquid pipe flow. Journal of Natural Gas Science and Engineering, 2011, 3, 413-422.	4.4	32
76	A Model for Wetted-Wall Fraction and Gravity Center of Liquid Film in Gas/Liquid Pipe Flow. SPE Journal, 2011, 16, 692-697.	3.1	28
77	Sensitivity of Slug Flow Mechanistic Models on Slug Length. Journal of Energy Resources Technology, Transactions of the ASME, 2011, 133, .	2.3	11
78	High-Viscosity Oil-Gas Flow in Vertical Pipe. , 2010, , .		14
79	Power-Law Correlation for Two-Phase Pressure Drop of Gas/Liquid Flows in Horizontal Pipelines. SPE Projects, Facilities and Construction, 2010, 5, 176-182.	0.2	11
80	Experimental Study on High Viscosity Oil/Water Flow in Horizontal and Vertical Pipes. , 2009, , .		26
81	A Mechanistic Model for Gas/Liquid Flow in Upward Vertical Annuli. , 2009, , .		5
82	Sensitivity of Slug Flow Mechanistic Models on Slug Length. , 2009, , .		1
83	Paraffin Deposition During the Flow of Water-in-Oil and Oil-in-Water Dispersions in Pipes. , 2008, , .		27
84	Effects of High Oil Viscosity on Drift Velocity for Upward Inclined Pipes. , 2008, , .		8
85	Flow Assurance and Control in Petroleum Production and Transport. Journal of Energy Resources Technology, Transactions of the ASME, 2008, 130, .	2.3	0
86	An Investigation of Two-Phase Oil/Water Paraffin Deposition. SPE Production and Operations, 2008, 23, 49-55.	0.6	34
87	Characterization of Oil Water Flows in Inclined Pipes. , 2008, , .		16
88	A Model To Predict Liquid Holdup and Pressure Gradient of Near-Horizontal Wet-Gas Pipelines. SPE Projects, Facilities and Construction, 2007, 2, 1-8.	0.2	10
89	Identification and Classification of New Three-Phase Gas/Oil/Water Flow Patterns. , 2007, , .		15
90	Unified Model of Heat Transfer in Gas-Liquid Pipe Flow. SPE Production and Operations, 2006, 21, 114-122.	0.6	15

#	Article	IF	CITATIONS
91	Effects of High Oil Viscosity on Oil/Gas Flow Behavior in Horizontal Pipes. , 2006, , .		17
92	Unified Modeling of Gas/Oil/Water Pipe Flow - Basic Approaches and Preliminary Validation. SPE Projects, Facilities and Construction, 2006, 1, 1-7.	0.2	36
93	An Experimental Study on Mechanics of Wax Removal in Pipeline. Journal of Energy Resources Technology, Transactions of the ASME, 2005, 127, 302-309.	2.3	40
94	A Numerical Model Coupling Reservoir and Horizontal Well Flow Dynamics—Applications in Well Completions, and Production Logging. Journal of Energy Resources Technology, Transactions of the ASME, 2004, 126, 169-176.	2.3	14
95	A unified mechanistic model for slug liquid holdup and transition between slug and dispersed bubble flows. International Journal of Multiphase Flow, 2003, 29, 97-107.	3.4	93
96	Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 1: Model Development. Journal of Energy Resources Technology, Transactions of the ASME, 2003, 125, 266-273.	2.3	257
97	Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 2: Model Validation. Journal of Energy Resources Technology, Transactions of the ASME, 2003, 125, 274-283.	2.3	82
98	Unified Model for Gas-Liquid Pipe Flow Via Slug Dynamics: Part 2 — Model Validation. , 2002, , 787.		2
99	Influence of Pressure Drop Along the Wellbore on Horizontal-Well Productivity. SPE Journal, 1999, 4, 288-301.	3.1	64
100	Flow-Pattern Transition and Hydrodynamic Modeling of Churn Flow. SPE Journal, 1999, 4, 342-348.	3.1	38
101	Effect of Conductivity on Horizontal-Well Pressure-Behavior. SPE Advanced Technology Series, 1995, 3, 85-94.	0.2	81
102	Microscopic Study of Wax Precipitation—Static Conditions. Energy & Fuels, 0, , .	5.1	12