List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1141238/publications.pdf Version: 2024-02-01

		6613	10445
520	28,765	79	139
papers	citations	h-index	g-index
531	531	531	24039
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience - Landmark, 2008, Volume, 6938.	3.0	609
3	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	12.8	450
4	The natural history of Anaplasma marginale. Veterinary Parasitology, 2010, 167, 95-107.	1.8	387
5	A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Animal Health Research Reviews, 2007, 8, 23-28.	3.1	323
6	Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, 2017, 7, 114.	3.9	321
7	Antigens and Alternatives for Control of Anaplasma marginale Infection in Cattle. Clinical Microbiology Reviews, 2003, 16, 698-712.	13.6	303
8	Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Veterinary Microbiology, 2008, 127, 1-9.	1.9	276
9	Anaplasma marginale(Rickettsiales: Anaplasmataceae): recent advances in defining host–pathogen adaptations of a tick-borne rickettsia. Parasitology, 2004, 129, S285-S300.	1.5	247
10	The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Research, 2014, 108, 104-128.	4.1	227
11	Strategies for development of vaccines for control of ixodid tick species. Parasite Immunology, 2006, 28, 275-283.	1.5	199
12	Interaction of the tick immune system with transmitted pathogens. Frontiers in Cellular and Infection Microbiology, 2013, 3, 26.	3.9	198
13	Effects of environmental change on zoonotic disease risk: an ecological primer. Trends in Parasitology, 2014, 30, 205-214.	3.3	196
14	Field studies and cost-effectiveness analysis of vaccination with Gavac? against the cattle tick Boophilus microplus*1. Vaccine, 1998, 16, 366-373.	3.8	185
15	Sequence Analysis of the msp4 Gene of Anaplasma phagocytophilum Strains. Journal of Clinical Microbiology, 2005, 43, 1309-1317.	3.9	180
16	Impact of Climate Trends on Tick-Borne Pathogen Transmission. Frontiers in Physiology, 2012, 3, 64.	2.8	179
17	Different pathways mediate virus inducibility of the human IFN-α1 and IFN-β genes. Cell, 1990, 60, 767-779.	28.9	177
18	High level expression of the B. microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. Journal of Biotechnology, 1994, 33, 135-146.	3.8	162

#	Article	IF	CITATIONS
19	Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine, 2000, 18, 2275-2287.	3.8	161
20	Large-scale production in Pichia pastoris of the recombinant vaccine Gavacâ,,¢ against cattle tick. Vaccine, 1997, 15, 414-422.	3.8	156
21	Sequence analysis of the msp4 gene of Anaplasma ovis strains. Veterinary Microbiology, 2007, 119, 375-381.	1.9	152
22	Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavacâ,,¢. Genetic Analysis, Techniques and Applications, 1999, 15, 143-148.	1.5	151
23	Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis. PLoS Genetics, 2015, 11, e1005120.	3.5	139
24	Bovine Tuberculosis in Doñana Biosphere Reserve: The Role of Wild Ungulates as Disease Reservoirs in the Last Iberian Lynx Strongholds. PLoS ONE, 2008, 3, e2776.	2.5	139
25	Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine, 2003, 21, 1492-1501.	3.8	136
26	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	4.7	135
27	Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells*. Molecular and Cellular Proteomics, 2015, 14, 3154-3172.	3.8	135
28	Reversible silencing of enhancers by sequences derived from the human IFN-α promoter. Cell, 1987, 50, 1057-1069.	28.9	133
29	The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproductionâ^†. Vaccine, 2006, 24, 4082-4095.	3.8	132
30	Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Review of Vaccines, 2003, 2, 583-593.	4.4	131
31	RNA interference for the study and genetic manipulation of ticks. Trends in Parasitology, 2007, 23, 427-433.	3.3	131
32	The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Frontiers in Veterinary Science, 2014, 1, 27.	2.2	128
33	Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infectious Diseases, 2010, 10, 46.	2.9	125
34	Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. Tuberculosis, 2007, 87, 360-367.	1.9	123
35	Genetic diversity ofAnaplasmaspecies major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. Animal Health Research Reviews, 2005, 6, 75-89.	3.1	122
36	Strategies for new and improved vaccines against ticks and tickâ€borne diseases. Parasite Immunology, 2016, 38, 754-769.	1.5	122

#	Article	IF	CITATIONS
37	Potential Vertebrate Reservoir Hosts and Invertebrate Vectors ofAnaplasma marginaleandA. phagocytophilumin Central Spain. Vector-Borne and Zoonotic Diseases, 2005, 5, 390-401.	1.5	119
38	Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Veterinary Parasitology, 2011, 181, 17-22.	1.8	116
39	Disease threats to the endangered Iberian lynx (Lynx pardinus). Veterinary Journal, 2009, 182, 114-124.	1.7	115
40	Tick vaccines: current status and future directions. Expert Review of Vaccines, 2015, 14, 1367-1376.	4.4	114
41	Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Experimental and Applied Acarology, 1999, 23, 883-895.	1.6	112
42	SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Veterinary Quarterly, 2021, 41, 181-201.	6.7	112
43	Characterization of ferritin 2 for the control of tick infestations. Vaccine, 2010, 28, 2993-2998.	3.8	111
44	Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitology Research, 2010, 106, 471-479.	1.6	110
45	Ixodid ticks parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus) Tj ETQq1 1	0.784314 rg 1.8	gBT_/Qverlock
46	Protection against Tuberculosis in Eurasian Wild Boar Vaccinated with Heat-Inactivated Mycobacterium bovis. PLoS ONE, 2011, 6, e24905.	2.5	108
47	Reinstatement of <i>Rhipicephalus</i> (<i>Boophilus</i>) <i>australis</i> (Acari: Ixodidae) With Redescription of the Adult and Larval Stages. Journal of Medical Entomology, 2012, 49, 794-802.	1.8	106
48	Molecular phylogeny and biogeography of North American isolates of Anaplasma marginale (Rickettsiaceae: Ehrlichieae). Veterinary Parasitology, 2001, 97, 65-76.	1.8	105
49	Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitology Research, 2006, 100, 85-91.	1.6	105
50	Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. International Journal for Parasitology, 2001, 31, 145-153.	3.1	104
51	Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. Veterinary Parasitology, 2005, 133, 357-362.	1.8	103
52	Control of ticks of ruminants, with special emphasis on livestock farming systems in India: present and future possibilities for integrated control—a review. Experimental and Applied Acarology, 2006, 40, 49-66.	1.6	103
53	Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communications, 2017, 8, 14401.	12.8	103
54	bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6972-6977.	7.1	102

#	Article	IF	CITATIONS
55	Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. Vaccine, 1998, 16, 1990-1992.	3.8	100
56	Anaplasma phagocytophilum Inhibits Apoptosis and Promotes Cytoskeleton Rearrangement for Infection of Tick Cells. Infection and Immunity, 2013, 81, 2415-2425.	2.2	99
57	Controlling ticks and tick-borne diseases…looking forward. Ticks and Tick-borne Diseases, 2018, 9, 1354-1357.	2.7	99
58	Progress in the control of bovine tuberculosis in Spanish wildlife. Veterinary Microbiology, 2011, 151, 170-178.	1.9	97
59	Tick–Host–Pathogen Interactions: Conflict and Cooperation. PLoS Pathogens, 2016, 12, e1005488.	4.7	96
60	Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics, 2007, 90, 712-722.	2.9	95
61	Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. Veterinary Microbiology, 2007, 119, 382-390.	1.9	95
62	Prevalence of Tick-Borne Pathogens in Adult <i>Dermacentor</i> spp. Ticks from Nine Collection Sites in France. Vector-Borne and Zoonotic Diseases, 2013, 13, 226-236.	1.5	95
63	Temporal Trend of Tuberculosis in Wild Ungulates from Mediterranean Spain. Transboundary and Emerging Diseases, 2013, 60, 92-103.	3.0	95
64	Vaccination with proteins involved in tick–pathogen interactions reduces vector infestations and pathogen infection. Vaccine, 2013, 31, 5889-5896.	3.8	94
65	Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cellular Microbiology, 2004, 7, 549-559.	2.1	93
66	Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. International Journal for Parasitology, 2007, 37, 653-662.	3.1	92
67	Serologic Tests for Detecting Antibodies against <i>Mycobacterium Bovis</i> and <i>Mycobacterium Avium</i> Subspecies <i>Paratuberculosis</i> in Eurasian Wild Boar (<i>Sus Scrofa Scrofa</i>). Journal of Veterinary Diagnostic Investigation, 2011, 23, 77-83.	1.1	92
68	Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnology, 2009, 9, 29.	3.3	91
69	Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Veterinary Parasitology, 1995, 57, 339-349.	1.8	90
70	Phylogeography of New World isolates of Anaplasma marginale based on major surface protein sequences. Veterinary Microbiology, 2002, 88, 275-285.	1.9	90
71	Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts. Trends in Microbiology, 2016, 24, 173-180.	7.7	88
72	Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook, 2021, 3, 7.	3.4	87

#	Article	IF	CITATIONS
73	Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Developmental and Comparative Immunology, 2009, 33, 612-617.	2.3	85
74	Tick vaccines and the control of tick-borne pathogens. Frontiers in Cellular and Infection Microbiology, 2013, 3, 30.	3.9	85
75	Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. International Journal for Parasitology, 2012, 42, 187-195.	3.1	84
76	Evidence of the role of tick subolesin in gene expression. BMC Genomics, 2008, 9, 372.	2.8	83
77	First Molecular Evidence of <i>Anaplasma ovis</i> and <i>Rickettsia</i> spp. in Keds (Diptera:) Tj ETQq1 1 0.78431	14 rgBT /O	verlgck 10 Tf
78	Anaplasma marginale msp1 α Genotypes Evolved under Positive Selection Pressure but Are Not Markers for Geographic Isolates. Journal of Clinical Microbiology, 2003, 41, 1609-1616.	3.9	82
79	Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evolutionary Biology, 2009, 9, 46.	3.2	82
80	Effect of vaccination with a recombinant Bm86 antigen preparation on natural infestations of Boophilus microplus in grazing dairy and beef pure and cross-bred cattle in Brazil. Vaccine, 1995, 13, 1804-1808.	3.8	81
81	Major surface protein 1a effects tick infection and transmission of Anaplasma marginale. International Journal for Parasitology, 2001, 31, 1705-1714.	3.1	81
82	Observed Prevalence of Tick-borne Pathogens in Domestic Animals in Sicily, Italy during 2003?2005. Zoonoses and Public Health, 2007, 54, 8-15.	2.2	81
83	First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. Veterinary Microbiology, 2007, 122, 316-322.	1.9	81
84	Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, 2015, 5, 10361.	3.3	81
85	Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1426-1430.	1.7	81
86	Characterization of three Ixodes scapularis cDNAs protective against tick infestations. Vaccine, 2005, 23, 4403-4416.	3.8	80
87	Environmental and Molecular Drivers of the α-Gal Syndrome. Frontiers in Immunology, 2019, 10, 1210.	4.8	80
88	Serologic Cross-Reactivity between Anaplasma marginale and Anaplasma phagocytophilum. Vaccine Journal, 2005, 12, 1177-1183.	3.1	79
89	Vaccinomics, the new road to tick vaccines. Vaccine, 2013, 31, 5923-5929.	3.8	79
90	Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Preventive Veterinary Medicine, 2012, 107, 214-221.	1.9	78

#	Article	IF	CITATIONS
91	Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Veterinary Parasitology, 2008, 154, 354-359.	1.8	77
92	Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Developmental Biology, 2009, 9, 42.	2.1	77
93	First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine, 2009, 27, 6662-6668.	3.8	77
94	Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine, 2013, 31, 1187-1196.	3.8	77
95	Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human–wildlife interface. Ticks and Tick-borne Diseases, 2016, 7, 284-290.	2.7	77
96	RNA interference screening in ticks for identification of protective antigens. Parasitology Research, 2005, 96, 137-141.	1.6	76
97	Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks and Tick-borne Diseases, 2012, 3, 283-287.	2.7	76
98	Expression of heat shock proteins and subolesin affects stress responses, <i>Anaplasma phagocytophilum</i> infection and questing behaviour in the tick, <i>lxodes scapularis</i> . Medical and Veterinary Entomology, 2012, 26, 92-102.	1.5	76
99	Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Experimental and Molecular Medicine, 2017, 49, e301-e301.	7.7	75
100	Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine, 2017, 35, 5089-5094.	3.8	74
101	Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine, 2011, 29, 8575-8579.	3.8	73
102	<i>Anaplasma phagocytophilum</i> increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector <i>lxodes scapularis</i> . Epigenetics, 2016, 11, 303-319.	2.7	73
103	Characterization of the functional domain of major surface protein 1a involved in adhesion of the rickettsia Anaplasma marginale to host cells. Veterinary Microbiology, 2003, 91, 265-283.	1.9	72
104	infection in free-ranging Iberian red deer in the region of Castilla-La Mancha, Spain. Veterinary Microbiology, 2004, 100, 163-173.	1.9	72
105	A Systems Biology Approach to the Characterization of Stress Response in Dermacentor reticulatus Tick Unfed Larvae. PLoS ONE, 2014, 9, e89564.	2.5	72
106	Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen <i>Anaplasma marginale</i> . Animal Health Research Reviews, 2001, 2, 163-174.	3.1	71
107	Infection Exclusion of the Rickettsial Pathogen Anaplasma marginale in the Tick Vector Dermacentor variabilis. Vaccine Journal, 2003, 10, 182-184.	3.1	71
108	Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine, 2005, 23, 5294-5298.	3.8	71

#	Article	IF	CITATIONS
109	Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale. BMC Genomics, 2010, 11, 186.	2.8	71
110	Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasites and Vectors, 2015, 8, 599.	2.5	71
111	Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. European Journal of Wildlife Research, 2004, 50, 187-196.	1.4	70
112	Immunological Control of Ticks through Vaccination with <i>Boophilus microplus</i> Gut Antigens. Annals of the New York Academy of Sciences, 2000, 916, 617-621.	3.8	70
113	Genetic basis and impact of tick acaricide resistance. Frontiers in Bioscience - Landmark, 2009, Volume, 2657.	3.0	70
114	Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. Research in Veterinary Science, 2008, 84, 382-386.	1.9	69
115	Factors Driving the Abundance of Ixodes ricinus Ticks and the Prevalence of Zoonotic I. ricinus-Borne Pathogens in Natural Foci. Applied and Environmental Microbiology, 2012, 78, 2669-2676.	3.1	69
116	Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine, 2012, 30, 273-279.	3.8	68
117	Tick galactosyltransferases are involved in α-Cal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Scientific Reports, 2018, 8, 14224.	3.3	68
118	The genus Anaplasma: new challenges after reclassification. OIE Revue Scientifique Et Technique, 2015, 34, 577-586.	1.2	67
119	Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 23.	3.9	66
120	Tick control: further thoughts on a research agenda. Trends in Parasitology, 2006, 22, 550-551.	3.3	65
121	Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry. Vaccine, 2009, 27, 4056-4063.	3.8	65
122	Prevalence and Genotypes of <i>Anaplasma</i> Species and Habitat Suitability for Ticks in a Mediterranean Ecosystem. Applied and Environmental Microbiology, 2008, 74, 7578-7584.	3.1	64
123	Conservation of major surface protein 1 genes of Anaplasma marginale during cyclic transmission between ticks and cattle. Gene, 2002, 282, 95-102.	2.2	62
124	Prevalence of Coxiella burnetti infection in wild and farmed ungulates. Veterinary Microbiology, 2008, 126, 282-286.	1.9	62
125	Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. Parasitology Research, 2009, 105, 97-111.	1.6	62
126	Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine, 2012, 30, 265-272.	3.8	62

#	Article	IF	CITATIONS
127	Molecular identification of tick-borne pathogens in Nigerian ticks. Veterinary Parasitology, 2012, 187, 572-577.	1.8	62
128	One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasites and Vectors, 2010, 3, 36.	2.5	61
129	Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine, 2011, 29, 2248-2254.	3.8	60
130	Autocidal control of ticks by silencing of a single gene by RNA interference. Biochemical and Biophysical Research Communications, 2006, 344, 332-338.	2.1	59
131	Characterization of <i>Anaplasma</i> Infections in Sicily, Italy. Annals of the New York Academy of Sciences, 2008, 1149, 90-93.	3.8	58
132	Subolesin/Akirin Vaccines for the Control of Arthropod Vectors and Vectorborne Pathogens. Transboundary and Emerging Diseases, 2013, 60, 172-178.	3.0	56
133	Guidelines for the Direct Detection of <i>Anaplasma</i> spp. in Diagnosis and Epidemiological Studies. Vector-Borne and Zoonotic Diseases, 2017, 17, 12-22.	1.5	56
134	The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Experimental and Applied Acarology, 2003, 29, 331-344.	1.6	55
135	Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to <i>Anaplasma</i> spp. Infection and Heat Shock. International Journal of Proteomics, 2010, 2010, 1-11.	2.0	55
136	COVID-19 is likely to impact animal health. Preventive Veterinary Medicine, 2020, 180, 105030.	1.9	55
137	Integrated control of acaricide-resistant Boophilus microplus populations on grazing cattle in Mexico using vaccination with Gavac and amidine treatments. Experimental and Applied Acarology, 1999, 23, 841-849.	1.6	54
138	High prevalence of Hepatozoon-infection among shepherd dogs in a region considered to be free of Rhipicephalus sanguineus. Veterinary Parasitology, 2013, 196, 189-193.	1.8	54
139	Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget, 2017, 8, 20630-20644.	1.8	54
140	Introduction of foreign DNA into the spermatozoa of farm animals. Theriogenology, 1990, 34, 1099-1110.	2.1	53
141	Subolesin expression in response to pathogen infection in ticks. BMC Immunology, 2010, 11, 7.	2.2	53
142	New species of Ehrlichia isolated from Rhipicephalus (Boophilus) microplus shows an ortholog of the E. canis major immunogenic glycoprotein gp36 with a new sequence of tandem repeats. Parasites and Vectors, 2012, 5, 291.	2.5	53
143	Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines, 2020, 8, 702.	4.4	53
144	Molecular characterization of Anaplasma platys strains from dogs in Sicily, Italy. BMC Veterinary Research, 2006, 2, 24.	1.9	52

#	Article	IF	CITATIONS
145	West Nile virus in the endangered Spanish imperial eagle. Veterinary Microbiology, 2008, 129, 171-178.	1.9	52
146	Functional genomics and evolution of tick–Anaplasma interactions and vaccine development. Veterinary Parasitology, 2010, 167, 175-186.	1.8	52
147	Oral Vaccination with Heat Inactivated Mycobacterium bovis Activates the Complement System to Protect against Tuberculosis. PLoS ONE, 2014, 9, e98048.	2.5	52
148	Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasites and Vectors, 2015, 8, 538.	2.5	52
149	Factors driving the circulation and possible expansion of Crimean-Congo haemorrhagic fever virus in the western Palearctic. Journal of Applied Microbiology, 2013, 114, 278-286.	3.1	51
150	Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA. Parasitology Research, 2007, 100, 1411-1415.	1.6	50
151	Increasing Contact with Hepatitis E Virus in Red Deer, Spain. Emerging Infectious Diseases, 2010, 16, 1994-1996.	4.3	50
152	Synergistic effect of silencing the expression of tick protective antigens 4D8 and Rs86 in Rhipicephalus sanguineus by RNA interference. Parasitology Research, 2006, 99, 108-113.	1.6	49
153	Targeting the tick-pathogen interface for novel control strategies. Frontiers in Bioscience - Landmark, 2008, Volume, 6947.	3.0	49
154	Characterization of Anaplasma phagocytophilum and A. ovis infection in a naturally infected sheep flock with poor health condition. Tropical Animal Health and Production, 2010, 42, 1327-1331.	1.4	49
155	IrSPI, a Tick Serine Protease Inhibitor Involved in Tick Feeding and Bartonella henselae Infection. PLoS Neglected Tropical Diseases, 2014, 8, e2993.	3.0	49
156	Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks and Tick-borne Diseases, 2016, 7, 276-283.	2.7	49
157	Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. Clinical Proteomics, 2017, 14, 36.	2.1	49
158	Functional Evolution of Subolesin/Akirin. Frontiers in Physiology, 2018, 9, 1612.	2.8	49
159	Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular lymph nodes and oropharyngeal tonsils of European wild boars naturally infected withMycobacterium bovis. Proteomics, 2007, 7, 220-231.	2.2	48
160	Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiology, 2011, 11, 27.	3.3	48
161	Evaluation of baits for oral vaccination of European wild boar piglets. Research in Veterinary Science, 2009, 86, 388-393.	1.9	47
162	Safety Evaluation of Transgenic Tilapia with Accelerated Growth. Marine Biotechnology, 1999, 1, 2-14.	2.4	46

#	Article	IF	CITATIONS
163	Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biology, 2009, 7, 57.	3.8	46
164	Genetic diversity of Anaplasma marginale in Argentina. Veterinary Parasitology, 2009, 162, 176-180.	1.8	46
165	Survey on blood-sucking lice (Phthiraptera: Anoplura) of ruminants and pigs with molecular detection of Anaplasma and Rickettsia spp. Veterinary Parasitology, 2010, 174, 355-358.	1.8	46
166	Characterization of Aedes albopictus akirin for the control of mosquito and sand fly infestations. Vaccine, 2010, 29, 77-82.	3.8	46
167	Synanthropic Birds Associated with High Prevalence of Tick-Borne Rickettsiae and with the First Detection of <i>Rickettsia aeschlimannii</i> in Hungary. Vector-Borne and Zoonotic Diseases, 2013, 13, 77-83.	1.5	46
168	Tick- and fly-borne bacteria in ungulates: the prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Veterinary Research, 2018, 14, 98.	1.9	46
169	Functional and Immunological Relevance of Anaplasma marginale Major Surface Protein 1a Sequence and Structural Analysis. PLoS ONE, 2013, 8, e65243.	2.5	46
170	Genes differentially expressed in oropharyngeal tonsils and mandibular lymph nodes of tuberculous and nontuberculous European wild boars naturally exposed toMycobacterium bovis. FEMS Immunology and Medical Microbiology, 2006, 46, 298-312.	2.7	45
171	Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis. PLoS ONE, 2013, 8, e65915.	2.5	45
172	Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. Vaccine, 2017, 35, 1323-1328.	3.8	45
173	Genetic diversity and molecular phylogeny of Anaplasma marginale isolates from Minas Gerais, Brazil. Veterinary Parasitology, 2004, 121, 307-316.	1.8	44
174	Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine, 2010, 28, 5398-5406.	3.8	44
175	Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 307.	3.9	44
176	The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). PLoS ONE, 2015, 10, e0125760.	2.5	44
177	Tick Vaccines and the Transmission of Tick-Borne Pathogens. Veterinary Research Communications, 2007, 31, 85-90.	1.6	43
178	A transversal study on antibodies against selected pathogens in dromedary camels in the Canary Islands, Spain. Veterinary Microbiology, 2013, 167, 468-473.	1.9	43
179	Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasites and Vectors, 2014, 7, 42.	2.5	43
180	Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks and Tick-borne Diseases, 2015, 6, 758-767.	2.7	43

#	Article	IF	CITATIONS
181	Control of Ixodes ricinus and Dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine, 2016, 34, 3010-3013.	3.8	43
182	Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. Preventive Veterinary Medicine, 2018, 155, 11-20.	1.9	43
183	Evolutionary Insights into the Tick Hologenome. Trends in Parasitology, 2019, 35, 725-737.	3.3	43
184	Cattle ticks and tick-borne diseases: a review of Uganda's situation. Ticks and Tick-borne Diseases, 2021, 12, 101756.	2.7	43
185	Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovisin european wild boar. BMC Veterinary Research, 2008, 4, 43.	1.9	42
186	Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. European Journal of Wildlife Research, 2011, 57, 697-706.	1.4	42
187	Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine, 2013, 31, 4728-4735.	3.8	42
188	Usutu Virus in Migratory Song Thrushes, Spain. Emerging Infectious Diseases, 2013, 19, 1173-1175.	4.3	42
189	Antibodies to Anaplasma marginale major surface proteins 1a and 1b inhibit infectivity for cultured tick cells. Veterinary Parasitology, 2003, 111, 247-260.	1.8	41
190	Infection of Tick Cells and Bovine Erythrocytes with One Genotype of the Intracellular Ehrlichia Anaplasma marginale Excludes Infection with Other Genotypes. Vaccine Journal, 2002, 9, 658-668.	3.1	40
191	Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. Vaccine, 2010, 28, 1786-1795.	3.8	40
192	Species interactions in occurrence data for a community of tick-transmitted pathogens. Scientific Data, 2016, 3, 160056.	5.3	40
193	Fatal bovine anaplasmosis in a herd with new genotypes of Anaplasma marginale, Anaplasma ovis and concurrent haemoplasmosis. Research in Veterinary Science, 2012, 92, 30-35.	1.9	39
194	Applications of a cell culture system for studying the interaction ofAnaplasmamarginale with tick cells. Animal Health Research Reviews, 2002, 3, 57-68.	3.1	38
195	Glycosylation of Anaplasma marginale Major Surface Protein 1a and Its Putative Role in Adhesion to Tick Cells. Infection and Immunity, 2004, 72, 3022-3030.	2.2	38
196	Mapping of B-cell epitopes in the N-terminal repeated peptides of Anaplasma marginale major surface protein 1a and characterization of the humoral immune response of cattle immunized with recombinant and whole organism antigens. Veterinary Immunology and Immunopathology, 2004, 98, 137-151.	1.2	38
197	Experimental transmission of field Anaplasma marginale and the A. centrale vaccine strain by Hyalomma excavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus ticks. Veterinary Microbiology, 2009, 134, 254-260.	1.9	38
198	Prevalence and genetic diversity of Babesia and Anaplasma species in cattle in Sudan. Veterinary Parasitology, 2011, 181, 146-152.	1.8	38

#	Article	IF	CITATIONS
199	Progress in Oral Vaccination against Tuberculosis in Its Main Wildlife Reservoir in Iberia, the Eurasian Wild Boar. Veterinary Medicine International, 2012, 2012, 1-11.	1.5	38
200	Natural Bagaza virus infection in game birds in southern Spain. Veterinary Research, 2012, 43, 65.	3.0	38
201	Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 2016, 6, 103.	3.9	38
202	The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasites and Vectors, 2019, 12, 154.	2.5	38
203	Detection of environmental SARSâ€CoVâ€2 RNA in a high prevalence setting in Spain. Transboundary and Emerging Diseases, 2021, 68, 1487-1492.	3.0	38
204	Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Frontiers in Immunology, 2021, 12, 704621.	4.8	38
205	Characterization of Anaplasma marginale Isolated from North American Bison. Applied and Environmental Microbiology, 2003, 69, 5001-5005.	3.1	37
206	Prevalence and Genetic Diversity of Anaplasma marginale Strains in Cattle in South Africa. Zoonoses and Public Health, 2007, 54, 23-30.	2.2	37
207	Silencing expression of the defensin, varisin, in male DermacentorÂvariabilis by RNA interference results in reduced AnaplasmaÂmarginale infections. Experimental and Applied Acarology, 2008, 46, 17-28.	1.6	37
208	Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris. BMC Biotechnology, 2008, 8, 14.	3.3	37
209	Vaccines for vector control: Exciting possibilities for the future. Veterinary Journal, 2012, 194, 139-140.	1.7	37
210	Subolesin: A candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine, 2014, 32, 3488-3494.	3.8	37
211	Adhesion of outer membrane proteins containing tandem repeats of and species (Rickettsiales:) Tj ETQq1 1 0.78	4314 rgBT 1.9	Qyerlock 1
212	Cloning, expression and immunoprotective efficacy of rHaa86, the homologue of the Bm86 tick vaccine antigen, from <i>Hyalomma anatolicum anatolicum</i> . Parasite Immunology, 2009, 31, 111-122.	1.5	36
213	Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasites and Vectors, 2014, 7, 10.	2.5	36
214	A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasites and Vectors, 2014, 7, 302.	2.5	36
215	Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks and Tick-borne Diseases, 2018, 9, 1241-1251.	2.7	36
216	Immunization of cattle with Anaplasma marginale derived from tick cell culture. Veterinary Parasitology, 2001, 102, 151-161.	1.8	35

#	Article	IF	CITATIONS
217	Co-feeding studies of ticks infected with Anaplasma marginale. Veterinary Parasitology, 2003, 112, 295-305.	1.8	35
218	Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. Parasites and Vectors, 2012, 5, 181.	2.5	35
219	Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. Parasites and Vectors, 2017, 10, 81.	2.5	35
220	Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone. Molecular Marine Biology and Biotechnology, 1996, 5, 62-70.	0.4	35
221	Vaccination of cattle with Anaplasma marginale derived from tick cell culture and bovine erythrocytes followed by challenge-exposure with infected ticks. Veterinary Microbiology, 2002, 89, 239-251.	1.9	34
222	Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. Ticks and Tick-borne Diseases, 2014, 5, 624-631.	2.7	34
223	Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends in Parasitology, 2015, 31, 470-476.	3.3	34
224	Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 360.	3.9	34
225	Why New Vaccines for the Control of Ectoparasite Vectors Have Not Been Registered and Commercialized?. Vaccines, 2019, 7, 75.	4.4	34
226	Detection of Bm86 antigen in different strains of Boophilus microplus and effectiveness of immunization with recombinant Bm86. Parasite Immunology, 1994, 16, 493-500.	1.5	33
227	Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine, 2012, 30, 3453-3458.	3.8	33
228	The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasites and Vectors, 2016, 9, 467.	2.5	33
229	Experimental transmission of Anaplasma marginale by male Dermacentor reticulatus. BMC Veterinary Research, 2007, 3, 32.	1.9	32
230	Genetic diversity of Anaplasma marginale strains from an outbreak of bovine anaplasmosis in an endemic area. Veterinary Parasitology, 2008, 158, 103-109.	1.8	32
231	Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. European Journal of Wildlife Research, 2011, 57, 749-757.	1.4	32
232	High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Review of Vaccines, 2018, 17, 569-576.	4.4	32
233	Tick and Host Derived Compounds Detected in the Cement Complex Substance. Biomolecules, 2020, 10, 555.	4.0	32
234	Infection with Anaplasma phagocytophilum in a seronegative patient in Sicily, Italy: case report. Annals of Clinical Microbiology and Antimicrobials, 2005, 4, 15.	3.8	31

#	Article	IF	CITATIONS
235	Advances toward understanding the molecular biology of the Anaplasma-tick interface. Frontiers in Bioscience - Landmark, 2008, Volume, 7032.	3.0	31
236	Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758). BMC Genomics, 2011, 12, 105.	2.8	31
237	Ecological preferences of exophilic and endophilic ticks (Acari: Ixodidae) parasitizing wild carnivores in the Iberian Peninsula. Veterinary Parasitology, 2012, 184, 248-257.	1.8	31
238	Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS ONE, 2015, 10, e0137237.	2.5	31
239	Immunity to α-Gal: Toward a Single-Antigen Pan-Vaccine To Control Major Infectious Diseases. ACS Central Science, 2017, 3, 1140-1142.	11.3	31
240	Expression of Anaplasma marginale Major Surface Protein 2 Variants in Persistently Infected Ticks. Infection and Immunity, 2001, 69, 5151-5156.	2.2	30
241	Differential expression of the msp1 $\hat{l}\pm$ gene of Anaplasma marginale occurs in bovine erythrocytes and tick cells. Veterinary Microbiology, 2004, 98, 261-272.	1.9	30
242	Characterization of selected genes upregulated in non-tuberculous European wild boar as possible correlates of resistance to Mycobacterium bovis infection. Veterinary Microbiology, 2006, 116, 224-231.	1.9	30
243	Differential Expression of the Tick Protective Antigen Subolesin in <i>Anaplasma marginale</i> ―and <i>A. phagocytophilum</i> â€infected Host Cells. Annals of the New York Academy of Sciences, 2008, 1149, 27-35.	3.8	30
244	Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2009, 129, 119-125.	1.2	30
245	Ticks and tick-borne pathogens on the rise. Ticks and Tick-borne Diseases, 2012, 3, 115-116.	2.7	30
246	Re-emergence of bovine piroplasmosis in Hungary: has the etiological role of Babesia divergens been taken over by B. major and Theileria buffeli?. Parasites and Vectors, 2014, 7, 434.	2.5	30
247	Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Frontiers in Cellular and Infection Microbiology, 2018, 8, 116.	3.9	30
248	Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum. Frontiers in Cellular and Infection Microbiology, 2018, 8, 265.	3.9	30
249	Detection of new Crimean–Congo haemorrhagic fever virus genotypes in ticks feeding on deer and wild boar, Spain. Transboundary and Emerging Diseases, 2021, 68, 993-1000.	3.0	30
250	Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology. Frontiers in Immunology, 2021, 12, 730710.	4.8	30
251	Adjuvant and immunostimulating properties of the recombinant Bm86 protein expressed in Pichia pastoris. Vaccine, 1998, 16, 1053-1055.	3.8	29
252	Molecular Epidemiology of Human and Bovine Anaplasmosis in Southern Europe. Annals of the New York Academy of Sciences, 2006, 1078, 95-99.	3.8	29

#	Article	IF	CITATIONS
253	<i>Anaplasma phagocytophilum</i> and <i>Anaplasma marginale</i> Elicit Different Gene Expression Responses in Cultured Tick Cells. Comparative and Functional Genomics, 2009, 2009, 1-9.	2.0	29
254	Insights into the development of Ixodes scapularis: a resource for research on a medically important tick species. Parasites and Vectors, 2015, 8, 592.	2.5	29
255	Quantification of the Animal Tuberculosis Multi-Host Community Offers Insights for Control. Pathogens, 2020, 9, 421.	2.8	29
256	A model to simulate the effect of vaccination against Boophilus ticks on cattle. Veterinary Parasitology, 2000, 87, 315-326.	1.8	28
257	Genetic Diversity of Anaplasma marginale Strains from Cattle Farms in the Province of Palermo, Sicily. Zoonoses and Public Health, 2005, 52, 226-229.	1.4	28
258	Genetic Characterization of Anaplasma ovis Strains from Bighorn Sheep in Montana. Journal of Wildlife Diseases, 2006, 42, 381-385.	0.8	28
259	Inoculation of White-Tailed Deer (<i>Odocoileus Virginianus</i>) with Ap-V1 Or NY-18 Strains of <i>Anaplasma Phagocytophilum</i> and Microscopic Demonstration of Ap-V1 In <i>kodes Scapularis</i> Adults that Acquired Infection from Deer as Nymphs. Vector-Borne and Zoonotic Diseases. 2009. 9, 565-568.	1.5	28
260	Spatio-Temporal Trends of Iberian Wild Boar Contact with Mycobacterium tuberculosis Complex Detected by ELISA. EcoHealth, 2011, 8, 478-484.	2.0	28
261	Sheep experimentally infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis ticks. Ticks and Tick-borne Diseases, 2012, 3, 147-153.	2.7	28
262	Assessing the effects of variables and background selection on the capture of the tick climate niche. International Journal of Health Geographics, 2013, 12, 43.	2.5	28
263	Glutathione S-transferase affects permethrin detoxification in the brown dog tick, Rhipicephalus sanguineus. Ticks and Tick-borne Diseases, 2014, 5, 225-233.	2.7	28
264	Applying proteomics to tick vaccine development: where are we?. Expert Review of Proteomics, 2017, 14, 211-221.	3.0	28
265	The response of red deer to oral administration of heat-inactivated Mycobacterium bovis and challenge with a field strain. Veterinary Microbiology, 2017, 208, 195-202.	1.9	28
266	Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine. Frontiers in Cellular and Infection Microbiology, 2017, 7, 375.	3.9	28
267	Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence. PLoS Neglected Tropical Diseases, 2015, 9, e0004232.	3.0	28
268	Effect of particulation on the immunogenic and protective properties of the recombinant Bm86 antigen expressed in Pichia pastoris. Vaccine, 1998, 16, 374-380.	3.8	27
269	Advances in the genomics of ticks and tick-borne pathogens. Trends in Parasitology, 2007, 23, 391-396.	3.3	27
270	Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer (Cervus elaphus hispanicus) naturally infected with Mycobacterium bovis. Developmental and Comparative Immunology, 2008, 32, 85-91.	2.3	27

#	Article	IF	CITATIONS
271	Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildlife Research, 2009, 36, 203.	1.4	27
272	Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Science, 2010, 8, 43.	1.7	27
273	The glycoprotein TRP36 of Ehrlichia sp. UFMG-EV and related cattle pathogen Ehrlichia sp. UFMT-BV evolved from a highly variable clade of E. canis under adaptive diversifying selection. Parasites and Vectors, 2014, 7, 584.	2.5	27
274	Oral re-vaccination of Eurasian wild boar with Mycobacterium bovis BCG yields a strong protective response against challenge with a field strain. BMC Veterinary Research, 2014, 10, 96.	1.9	27
275	Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends in Parasitology, 2017, 33, 495-498.	3.3	27
276	Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bos indicus and Crossbred Cattle in Uganda. Vaccines, 2020, 8, 319.	4.4	27
277	Simulation of control strategies for the cattle tick Boophilus microplus employing vaccination with a recombinant Bm86 antigen preparation. Veterinary Parasitology, 1996, 63, 131-160.	1.8	26
278	Molecular analysis of Boophilus spp. (Acari: Ixodidae) tick strains. Veterinary Parasitology, 2000, 92, 209-222.	1.8	26
279	Expression of immunoregulatory genes in peripheral blood mononuclear cells of European wild boar immunized with BCG. Veterinary Microbiology, 2009, 134, 334-339.	1.9	26
280	Zoonotic Pathogens among White-Tailed Deer, Northern Mexico, 2004–2009. Emerging Infectious Diseases, 2012, 18, 1372-4.	4.3	26
281	Genomic Resources Notes accepted 1 April 2014 - 31 May 2014. Molecular Ecology Resources, 2014, 14, n/a-n/a.	4.8	26
282	Oral administration of heat-inactivated Mycobacterium bovis reduces the response of farmed red deer to avian and bovine tuberculin. Veterinary Immunology and Immunopathology, 2016, 172, 21-25.	1.2	26
283	A retrospective study of the characterization of Rickettsia species in ticks collected from humans. Ticks and Tick-borne Diseases, 2017, 8, 610-614.	2.7	26
284	Heatâ€inactivated <i>Mycobacterium bovis</i> protects zebrafish against mycobacteriosis. Journal of Fish Diseases, 2018, 41, 1515-1528.	1.9	26
285	Control of mycobacteriosis in zebrafish (Danio rerio) mucosally vaccinated with heat-inactivated Mycobacterium bovis. Vaccine, 2018, 36, 4447-4453.	3.8	26
286	Tick–Pathogen Interactions: The Metabolic Perspective. Trends in Parasitology, 2019, 35, 316-328.	3.3	26
287	Oral Vaccination With a Formulation Combining Rhipicephalus microplus Subolesin With Heat Inactivated Mycobacterium bovis Reduces Tick Infestations in Cattle. Frontiers in Cellular and Infection Microbiology, 2019, 9, 45.	3.9	26
288	Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental Aspergillus Infection in Poultry. Vaccines, 2020, 8, 285.	4.4	26

#	Article	IF	CITATIONS
289	Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria. PLoS ONE, 2016, 11, e0165607.	2.5	26
290	Comparative efficacy of rHaa86 and rBm86 against <i>Hyalomma anatolicum anatolicum</i> and <i>Rhipicephalus</i> (<i>Boophilus</i>) <i>microplus</i> . Parasite Immunology, 2012, 34, 297-301.	1.5	25
291	Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. Veterinary Microbiology, 2013, 167, 700-703.	1.9	25
292	Contributions to the morphology and phylogeny of the newly discovered bat tick species, Ixodes ariadnae in comparison with I. vespertilionis and I. simplex. Parasites and Vectors, 2015, 8, 47.	2.5	25
293	Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines. Frontiers in Cellular and Infection Microbiology, 2016, 6, 20.	3.9	25
294	Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine, 2017, 35, 5682-5692.	3.8	25
295	The antibody response to the glycan αâ€Gal correlates with COVIDâ€19 disease symptoms. Journal of Medical Virology, 2021, 93, 2065-2075.	5.0	25
296	α-Gal-Based Vaccines: Advances, Opportunities, and Perspectives. Trends in Parasitology, 2020, 36, 992-1001.	3.3	25
297	Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis. Vaccines, 2020, 8, 195.	4.4	25
298	Rickettsia massiliaein the Canary Islands. Emerging Infectious Diseases, 2009, 15, 1869-1870.	4.3	24
299	Prevalence of Tick-Borne Pathogens in Ticks in Sicily. Transboundary and Emerging Diseases, 2010, 57, 46-48.	3.0	24
300	RNA Interference in Ticks. Journal of Visualized Experiments, 2011, , .	0.3	24
301	Spotted Fever Group Rickettsiae in Questing Ticks, Central Spain. Emerging Infectious Diseases, 2013, 19, 1163-1165.	4.3	24
302	Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Frontiers in Physiology, 2019, 10, 318.	2.8	24
303	Capillary Tube Feeding System for Studying Tick-Pathogen Interactions of <i>Dermacentor variabilis</i> (Acari: Ixodidae) and <i>Anaplasma marginale</i> (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology, 2005, 42, 864-874.	1.8	23
304	Expression of perilipin in human promyelocytic cells in response to Anaplasma phagocytophilum infection results in modified lipid metabolism. Journal of Medical Microbiology, 2008, 57, 159-163.	1.8	23
305	Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations. Vaccine, 2009, 27, 7244-7248.	3.8	23
306	Acceptance and palatability for domestic and wildlife hosts of baits designed to deliver a tuberculosis vaccine to wild boar piglets. Preventive Veterinary Medicine, 2011, 98, 198-203.	1.9	23

#	Article	IF	CITATIONS
307	<i>Rickettsia conorii</i> Indian Tick Typhus Strain and <i>R. slovaca</i> in Humans, Sicily. Emerging Infectious Diseases, 2012, 18, 1008-10.	4.3	23
308	Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene, 2014, 540, 146-152.	2.2	23
309	High degree of mitochondrial gene heterogeneity in the bat tick species Ixodes vespertilionis, I. ariadnae and I. simplex from Eurasia. Parasites and Vectors, 2015, 8, 457.	2.5	23
310	Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection. Veterinary Sciences, 2016, 3, 15.	1.7	23
311	Vaccinomics Approach to Tick Vaccine Development. Methods in Molecular Biology, 2016, 1404, 275-286.	0.9	23
312	Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS ONE, 2015, 10, e0133038.	2.5	23
313	Protection in the absence of exclusion between two Brazilian isolates of Anaplasma marginale in experimentally infected calves. Veterinary Journal, 2010, 186, 374-378.	1.7	22
314	Anaplasma marginale major surface protein 1a: A marker of strain diversity with implications for control of bovine anaplasmosis. Ticks and Tick-borne Diseases, 2015, 6, 205-210.	2.7	22
315	Human to human transmission of arthropod-borne pathogens. Current Opinion in Virology, 2017, 22, 13-21.	5.4	22
316	Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?. Frontiers in Cellular and Infection Microbiology, 2017, 7, 74.	3.9	22
317	A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasites and Vectors, 2018, 11, 43.	2.5	22
318	A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of Ixodes ricinus and Dermacentor reticulatus Infestations in Companion Animals. Frontiers in Physiology, 2019, 10, 977.	2.8	22
319	Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Review of Molecular Diagnostics, 2020, 20, 905-911.	3.1	22
320	Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. International Journal of Molecular Sciences, 2020, 21, 5437.	4.1	22
321	A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines, 2020, 8, 77.	4.4	22
322	Evidence of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild Boar for Deer Exposure to Anaplasma spp. PLoS ONE, 2008, 3, e2999.	2.5	22
323	The α-Gal Syndrome and Potential Mechanisms. Frontiers in Allergy, 2021, 2, 783279.	2.8	22
324	A simulation study of the effects of acaricides and vaccination on Boophilus cattle–tick populations. Preventive Veterinary Medicine, 1999, 38, 47-63.	1.9	21

#	Article	IF	CITATIONS
325	Growth regulation and enhancement in tilapia: basic research findings and their applications. Genetic Analysis, Techniques and Applications, 1999, 15, 85-90.	1.5	21
326	Capillary Tube Feeding System for Studying Tick–Pathogen Interactions of <i>Dermacentor variabilis</i> (Acari: Ixodidae) and <i>Anaplasma marginale</i> (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology, 2005, 42, 864-874.	1.8	21
327	Comparative genomics and proteomics to study tissue-specific response and function in naturalMycobacterium bovisinfections. Animal Health Research Reviews, 2007, 8, 81-88.	3.1	21
328	Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of Brucella ovis. Veterinary Immunology and Immunopathology, 2009, 127, 295-303.	1.2	21
329	Identification and characterization of a novel tick-borne flavivirus subtype in goats (Capra hircus) in Spain. Journal of General Virology, 2015, 96, 1676-1681.	2.9	21
330	A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasites and Vectors, 2019, 12, 362.	2.5	21
331	Host Richness Increases Tuberculosis Disease Risk in Game-Managed Areas. Microorganisms, 2019, 7, 182.	3.6	21
332	Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 78.	3.9	21
333	Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. Infection, Genetics and Evolution, 2009, 9, 1232-1239.	2.3	20
334	Extractive bioconversion to produce the Aedes albopictus akirin in an aqueous two-phase system supporting Pichia pastoris growth and protein secretion. Biochemical Engineering Journal, 2009, 46, 105-114.	3.6	20
335	Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum marginatum and comparison with a vaccine candidate from Hyalomma scupense. Veterinary Parasitology, 2012, 190, 230-240.	1.8	20
336	ldentification and characterization of vaccine candidates against <i>Hyalomma anatolicum</i> —Vector of Crimeanâ€Congo haemorrhagic fever virus. Transboundary and Emerging Diseases, 2019, 66, 422-434.	3.0	20
337	Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells. Biotechnology and Applied Biochemistry, 1996, 23, 23-8.	3.1	20
338	The evaluation of yeast derivatives as adjuvants for the immune response to the Bm86 antigen in cattle. BMC Biotechnology, 2001, 1, 2.	3.3	19
339	Characterization of genetic diversity in Dermacentor andersoni (Acari: Ixodidae) with body size and weight polymorphism. Experimental Parasitology, 2005, 109, 16-26.	1.2	19
340	The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunology, 2006, 28, 687-688.	1.5	19
341	Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Veterinary Immunology and Immunopathology, 2008, 126, 27-34.	1.2	19
342	The impact of RNA interference of the subolesin and voraxin genes in male Amblyomma hebraeum (Acari: Ixodidae) on female engorgement and oviposition. Experimental and Applied Acarology, 2009, 47, 71-86.	1.6	19

#	Article	IF	CITATIONS
343	Efficacy of Hyalomma scupense (Hd86) antigen against Hyalomma excavatum and H. scupense tick infestations in cattle. Vaccine, 2012, 30, 7084-7089.	3.8	19
344	Demonstration of Transplacental Transmission of a Human Isolate ofAnaplasma phagocytophilumin an Experimentally Infected Sheep. Transboundary and Emerging Diseases, 2013, 60, 93-96.	3.0	19
345	Mosquito Akirin as a potential antigen for malaria control. Malaria Journal, 2014, 13, 470.	2.3	19
346	Low genetic diversity associated with low prevalence of Anaplasma marginale in water buffaloes in Marajó Island, Brazil. Ticks and Tick-borne Diseases, 2014, 5, 801-804.	2.7	19
347	Prospects for vaccination against the ticks of pets and the potential impact on pathogen transmission. Veterinary Parasitology, 2015, 208, 26-29.	1.8	19
348	Tuberculosis, genetic diversity and fitness in the red deer, Cervus elaphus. Infection, Genetics and Evolution, 2016, 43, 203-212.	2.3	19
349	Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks and Tick-borne Diseases, 2019, 10, 336-343.	2.7	19
350	Experimental Infection of C3H/HeJ Mice with the NY18 Isolate ofAnaplasma phagocytophilum. Veterinary Pathology, 2007, 44, 64-73.	1.7	18
351	Wild Boars as Hosts of Human-Pathogenic <i>Anaplasma phagocytophilum</i> Variants. Emerging Infectious Diseases, 2012, 18, 2094-2095.	4.3	18
352	Sequencing of modern Lepus VDJ genes shows that the usage of VHn genes has been retained in both Oryctolagus and Lepus that diverged 12 million years ago. Immunogenetics, 2013, 65, 777-784.	2.4	18
353	Control of vector-borne infectious diseases by human immunity against $\hat{I}\pm$ -Gal. Expert Review of Vaccines, 2016, 15, 953-955.	4.4	18
354	Molecular identification of tick-borne pathogens in ticks collected from dogs and small ruminants from Greece. Experimental and Applied Acarology, 2018, 74, 443-453.	1.6	18
355	Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. Ticks and Tick-borne Diseases, 2018, 9, 104-108.	2.7	18
356	Biotic and abiotic factors shape the microbiota of wild aught populations of the arbovirus vector <i>Culicoides imicola</i> . Insect Molecular Biology, 2018, 27, 847-861.	2.0	18
357	Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Review of Proteomics, 2018, 15, 627-635.	3.0	18
358	Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines, 2020, 8, 32.	4.4	18
359	Vaccinomics: a future avenue for vaccine development against emerging pathogens. Expert Review of Vaccines, 2021, 20, 1561-1569.	4.4	18
360	Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen Anaplasma marginale. Animal Health Research Reviews, 2001, 2, 163-73.	3.1	18

#	Article	IF	CITATIONS
361	Differential constitutive expression of interferon genes in early mouse embryos. Molecular Reproduction and Development, 1995, 41, 157-166.	2.0	17
362	Adaptations of the Tick-Borne Pathogen, Anaplasma marginale, for Survival in Cattle and Ticks. Experimental and Applied Acarology, 2002, 28, 9-25.	1.6	17
363	Influence of <i>methylmalonylâ€CoA mutase</i> alleles on resistance to bovine tuberculosis in the European wild boar (<i>Sus scrofa</i>). Animal Genetics, 2008, 39, 316-320.	1.7	17
364	Hd86, the Bm86 tick protein ortholog in Hyalomma scupense (syn. H. detritum): Expression in Pichia pastoris and analysis of nucleotides and amino acids sequences variations prior to vaccination trials. Veterinary Parasitology, 2012, 183, 215-223.	1.8	17
365	lophenoxic acid as a bait marker for wild mammals: efficacy and safety considerations. Mammal Review, 2013, 43, 156-166.	4.8	17
366	Proteomics Approach to the Study of Cattle Tick Adaptation to White Tailed Deer. BioMed Research International, 2013, 2013, 1-8.	1.9	17
367	Modeling the Impact of Climate and Landscape on the Efficacy of White Tailed Deer Vaccination for Cattle Tick Control in Northeastern Mexico. PLoS ONE, 2014, 9, e102905.	2.5	17
368	Cancer research meets tick vectors for infectious diseases. Lancet Infectious Diseases, The, 2014, 14, 916-917.	9.1	17
369	Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. Parasites and Vectors, 2015, 8, 485.	2.5	17
370	Complement component 3: a new paradigm in tuberculosis vaccine. Expert Review of Vaccines, 2016, 15, 275-277.	4.4	17
371	Immunity to $\hat{I}\pm$ -Gal: The Opportunity for Malaria and Tuberculosis Control. Frontiers in Immunology, 2017, 8, 1733.	4.8	17
372	The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Scientific Reports, 2019, 9, 13236.	3.3	17
373	A Vaccinology Approach to the Identification and Characterization of Dermanyssus gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines, 2019, 7, 190.	4.4	17
374	Infection with Toxocara canis Inhibits the Production of IgE Antibodies to α-Gal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis?. Vaccines, 2020, 8, 167.	4.4	17
375	Translational biotechnology for the control of ticks and tick-borne diseases. Ticks and Tick-borne Diseases, 2021, 12, 101738.	2.7	17
376	Current and Future Strategies for the Diagnosis and Treatment of the Alpha-Gal Syndrome (AGS). Journal of Asthma and Allergy, 0, Volume 15, 957-970.	3.4	17
377	Analysis of serum biochemical parameters in relation to Mycobacterium bovis infection of European wild boars (Sus scrofa) in Spain. European Journal of Wildlife Research, 2006, 52, 301-304.	1.4	16
378	SEROLOGIC AND MOLECULAR CHARACTERIZATION OF TICK-BORNE PATHOGENS IN LIONS (PANTHERA LEO) FROM THE FASANO SAFARI PARK, ITALY. Journal of Zoo and Wildlife Medicine, 2007, 38, 591-593.	0.6	16

#	Article	IF	CITATIONS
379	Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli. Journal of Biotechnology, 2008, 135, 326-332.	3.8	16
380	Propagation of a Brazilian isolate of Anaplasma marginale with appendage in a tick cell line (BME26) derived from Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 2009, 161, 150-153.	1.8	16
381	Response to the commentary of D. Macqueen on: Galindo RC, Doncel-Pérez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates [Dev. Comp. Immunol. 33 (2009) 612–617]. Developmental and Comparative Immunology, 2009. 33. 878-879.	2.3	16
382	Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle. Veterinary Parasitology, 2014, 205, 730-734.	1.8	16
383	Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide. Journal of Proteomics, 2014, 105, 204-216.	2.4	16
384	Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition. Ticks and Tick-borne Diseases, 2015, 6, 47-55.	2.7	16
385	Prevalence of type I sensitization to alphaâ€gal in forest service employees and hunters: Is the blood type an overlooked risk factor in epidemiological studies of the αâ€Gal syndrome?. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 2044-2047.	5.7	16
386	Tick Bites Induce Anti-α-Gal Antibodies in Dogs. Vaccines, 2019, 7, 114.	4.4	16
387	Tick–human interactions: from allergic klendusity to the α-Gal syndrome. Biochemical Journal, 2021, 478, 1783-1794.	3.7	16
388	Recent Developments in Oral Bait Vaccines for Wildlife. Recent Patents on Drug Delivery and Formulation, 2007, 1, 230-235.	2.1	15
389	Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. Biochemical Engineering Journal, 2010, 52, 79-90.	3.6	15
390	Identification of microorganisms in partially fed female horn flies, Haematobia irritans. Parasitology Research, 2012, 111, 1391-1395.	1.6	15
391	Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain–Barré Syndrome. Journal of Immunology, 2016, 196, 1102-1107.	0.8	15
392	Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands. Scientific Reports, 2017, 7, 6141.	3.3	15
393	Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Scientific Reports, 2018, 8, 1980.	3.3	15
394	Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks and Tick-borne Diseases, 2018, 9, 844-849.	2.7	15
395	Reduction in Oviposition of Poultry Red Mite (Dermanyssus gallinae) in Hens Vaccinated with Recombinant Akirin. Vaccines, 2019, 7, 121.	4.4	15
396	Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures. Frontiers in Veterinary Science, 2020, 7, 40.	2.2	15

#	Article	IF	CITATIONS
397	Immunity to glycan α-Gal and possibilities for the control of COVID-19. Immunotherapy, 2021, 13, 185-188.	2.0	15
398	Anaplasmosis: Focusing on Host-Vector-Pathogen Interactions for Vaccine Development. Annals of the New York Academy of Sciences, 2006, 1078, 416-423.	3.8	14
399	Molecular cloning and characterisation of the griffon vulture (Gyps fulvus) toll-like receptor 1. Developmental and Comparative Immunology, 2007, 31, 511-519.	2.3	14
400	Experimental infection of Eurasian wild boar with Mycobacterium avium subsp. avium. Veterinary Microbiology, 2010, 144, 240-245.	1.9	14
401	Characterization of the tick-pathogen interface by quantitative proteomics. Ticks and Tick-borne Diseases, 2012, 3, 154-158.	2.7	14
402	Tonsils of the Soft Palate Do Not Mediate the Response of Pigs to Oral Vaccination with Heat-Inactivated Mycobacterium bovis. Vaccine Journal, 2014, 21, 1128-1136.	3.1	14
403	The fossil record and the origin of ticks revisited. Experimental and Applied Acarology, 2018, 75, 255-261.	1.6	14
404	Coronavirus in cat flea: findings and questions regarding COVID-19. Parasites and Vectors, 2020, 13, 409.	2.5	14
405	Probiotic Bacteria with High Alpha-Gal Content Protect Zebrafish against Mycobacteriosis. Pharmaceuticals, 2021, 14, 635.	3.8	14
406	Recent Advances on the Innate Immune Response to Coxiella burnetii. Frontiers in Cellular and Infection Microbiology, 2021, 11, 754455.	3.9	14
407	Reproductive and safety assessment of vaccination with gavac against the cattle tick (Boophilus) Tj ETQq1 1 0.7	7843]4 rg 2.1	BT /Qverlock
408	Reduced major histocompatibility complex class II polymorphism in a hunterâ€managed isolated Iberian red deer population. Journal of Zoology, 2009, 277, 157-170.	1.7	13
409	Rough virulent strain of Brucella ovis induces pro- and anti-inflammatory cytokines in reproductive tissues in experimentally infected rams. Veterinary Microbiology, 2013, 161, 339-343.	1.9	13
410	Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. Vaccine, 2013, 31, 1582-1589.	3.8	13
411	Recent Studies on the Characterization ofAnaplasma marginaleIsolated from North American Bison. Annals of the New York Academy of Sciences, 2004, 1026, 114-117.	3.8	12
412	Analysis by LC/ESI-MS of iophenoxic acid derivatives and evaluation as markers of oral baits to deliver pharmaceuticals to wildlife. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1997-2002.	2.3	12
413	Delayed hypersensitivity reaction to mammalian galactose-α-1,3-galactose (α-Gal) after repeated tick bites in a patient from France. Ticks and Tick-borne Diseases, 2019, 10, 1057-1059.	2.7	12
414	Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). Experimental and Applied Acarology, 2019, 78, 555-564.	1.6	12

#	Article	IF	CITATIONS
415	Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway. Scientific Reports, 2019, 9, 9073.	3.3	12
416	Control of tick infestations in wild roe deer (Capreolus capreolus) vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine, 2020, 38, 6450-6454.	3.8	12
417	The Adoption of Viral Capsid-Derived Virus-Like Particles (VLPs) for Disease Prevention and Treatments. Vaccines, 2020, 8, 432.	4.4	12
418	Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis. PLoS Neglected Tropical Diseases, 2016, 10, e0004541.	3.0	12
419	Tuberculosis Epidemiology in Islands: Insularity, Hosts and Trade. PLoS ONE, 2013, 8, e71074.	2.5	12
420	Transcriptomics Data Integration Reveals Jak-STAT as a Common Pathway Affected by Pathogenic Intracellular Bacteria in Natural Reservoir Hosts. Journal of Proteomics and Bioinformatics, 2012, 05,	0.4	12
421	Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Review of Proteomics, 2021, 18, 1099-1116.	3.0	12
422	Effect of tetracycline on development of Anaplasma marginale in cultured Ixodes scapularis cells. Veterinary Parasitology, 2002, 107, 115-126.	1.8	11
423	Complete Genome Sequence of Ehrlichia mineirensis, a Novel Organism Closely Related to Ehrlichia canis with a New Host Association. Genome Announcements, 2015, 3, .	0.8	11
424	Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2017, 7, 145.	3.9	11
425	Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes. Ticks and Tick-borne Diseases, 2019, 10, 213-218.	2.7	11
426	Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. International Journal of Molecular Sciences, 2020, 21, 8813.	4.1	11
427	Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick—Pathogen Interactions. Pathogens, 2021, 10, 70.	2.8	11
428	Changes in Serum Biomarkers of Oxidative Stress in Cattle Vaccinated with Tick Recombinant Antigens: A Pilot Study. Vaccines, 2021, 9, 5.	4.4	11
429	Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2. Journal of Genetics and Genomics, 2010, 37, 725-736.	3.9	10
430	Hd86 mRNA expression profile in Hyalomma scupense life stages, could it contribute to explain anti-tick vaccine effect discrepancy between adult and immature instars?. Veterinary Parasitology, 2013, 198, 258-263.	1.8	10
431	Studies of Anaplasma phagocytophilum in sheep experimentally infected with the human NY-18 isolate: Characterization of tick feeding sites. Ticks and Tick-borne Diseases, 2014, 5, 744-752.	2.7	10
432	Species diversity and spatial distribution of ixodid ticks on small ruminants in Greece. Parasitology Research, 2016, 115, 4673-4680.	1.6	10

#	Article	IF	CITATIONS
433	Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks. Heliyon, 2017, 3, e00353.	3.2	10
434	Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Frontiers in Cellular and Infection Microbiology, 2017, 7, 234.	3.9	10
435	Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 180-187.	0.5	10
436	Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Frontiers in Physiology, 2019, 10, 462.	2.8	10
437	Modeling tick vaccines: a key tool to improve protection efficacy. Expert Review of Vaccines, 2020, 19, 217-225.	4.4	10
438	Anaplasma pathogen infection alters chemical composition of the exoskeleton of hard ticks (Acari:) Tj ETQq0 0 0) rg₿∏ /Ove	erlock 10 Tf 5
439	Isolation and characterization of. Veterinary Research, 2014, 45, 78.	3.0	10
440	Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Animal Health Research Reviews, 2002, 3, 57-68.	3.1	10
441	Sp110 transcription is induced and required by Anaplasma phagocytophilumfor infection of human promyelocytic cells. BMC Infectious Diseases, 2007, 7, 110.	2.9	9
442	Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin-Anaplasma marginale MSP1a chimeric antigen. Ticks and Tick-borne Diseases, 2015, 6, 820-828.	2.7	9
443	Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. Ticks and Tick-borne Diseases, 2015, 6, 522-529.	2.7	9
444	Molecular identification of spotted fever group Rickettsia in ticks collected from dogs and small ruminants in Greece. Experimental and Applied Acarology, 2019, 78, 421-430.	1.6	9
445	Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics and Antimicrobial Proteins, 2021, 13, 1254-1266.	3.9	9
446	Additional considerations for anti-tick vaccine research. Expert Review of Vaccines, 2022, 21, 1019-1021.	4.4	9
447	Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine, 2022, 40, 4564-4573.	3.8	9
448	Defining the Role of Subolesin in Tick Cell Culture by Use of RNA Interference. Annals of the New York Academy of Sciences, 2008, 1149, 41-44.	3.8	8
449	Production of recombinant Aedes albopictus akirin in Pichia pastoris using an aqueous two-phase semicontinuous fermentation process. Biochemical Engineering Journal, 2012, 68, 114-119.	3.6	8
450	Comparative proteomics identified immune response proteins involved in response to vaccination with heat-inactivated Mycobacterium bovis and mycobacterial challenge in cattle. Veterinary Immunology and Immunopathology, 2018, 206, 54-64.	1.2	8

#	Article	IF	CITATIONS
451	Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite <i>Dermanyssus gallinae</i> (De Geer, 1778). Avian Pathology, 2019, 48, S52-S59.	2.0	8
452	COVID-19 in the Developing World: Is the Immune Response to α-Gal an Overlooked Factor Mitigating the Severity of Infection?. ACS Infectious Diseases, 2020, 6, 3104-3108.	3.8	8
453	Host or pathogen-related factors in COVID-19 severity?. Lancet, The, 2020, 396, 1396-1397.	13.7	8
454	Citizen science initiative points at childhood BCG vaccination as a risk factor for COVIDâ€19. Transboundary and Emerging Diseases, 2021, 68, 3114-3119.	3.0	8
455	Proteomics Characterization of Tick-Host-Pathogen Interactions. Methods in Molecular Biology, 2015, 1247, 513-527.	0.9	8
456	Guillain-Barré and Alpha-gal Syndromes: Saccharides-induced Immune Responses. Exploratory Research and Hypothesis in Medicine, 2019, 000, 000-000.	0.4	8
457	A Quantum Vaccinomics Approach Based on Protein–Protein Interactions. Methods in Molecular Biology, 2022, 2411, 287-305.	0.9	8
458	Functional characterization of α-Gal producing lactic acid bacteria with potential probiotic properties. Scientific Reports, 2022, 12, 7484.	3.3	8
459	Targeting the Tick/Pathogen Interface for Developing New Anaplasmosis Vaccine Strategies. Veterinary Research Communications, 2007, 31, 91-96.	1.6	7
460	Recent Advances in the Development of Immunoadhesins for Immune Therapy and as Anti-Infective Agents. Recent Patents on Anti-infective Drug Discovery, 2009, 4, 183-189.	0.8	7
461	Characterization of pathogen-specific expression of host immune response genes in Anaplasma and Mycobacterium species infected ruminants. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, e133-e142.	1.6	7
462	Host expression of methylmalonyl-CoA mutase and tuberculosis: A missing link?. Medical Hypotheses, 2011, 76, 361-364.	1.5	7
463	Use of Percoll gradients to purify Anaplasma marginale (Rickettsiales: Anaplasmataceae) from tick cell cultures. Ticks and Tick-borne Diseases, 2014, 5, 511-515.	2.7	7
464	Anaplasma. , 2015, , 2033-2042.		7
465	A comparison of the performance of regression models of Amblyomma americanum (L.) (Ixodidae) using life cycle or landscape data from administrative divisions. Ticks and Tick-borne Diseases, 2016, 7, 624-630.	2.7	7
466	Remodeling of tick cytoskeleton in response to infection with i Anaplasma phagocytophilum i. Frontiers in Bioscience - Landmark, 2017, 22, 1830-1844.	3.0	7
467	Quantitative Proteomics Identifies Metabolic Pathways Affected by Babesia Infection and Blood Feeding in the Sialoproteome of the Vector Rhipicephalus bursa. Vaccines, 2020, 8, 91.	4.4	7
468	Microbial community of Hyalomma lusitanicum is dominated by Francisella-like endosymbiont. Ticks and Tick-borne Diseases, 2021, 12, 101624.	2.7	7

#	Article	IF	CITATIONS
469	Arthropod Ectoparasites Have Potential to Bind SARS-CoV-2 via ACE. Viruses, 2021, 13, 708.	3.3	7
470	Characterization of the anti-Î \pm -Cal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks and Tick-borne Diseases, 2021, 12, 101651.	2.7	7
471	Fatal cases of bovine anaplasmosis in a herd infected with different Anaplasma marginale genotypes in southern Spain. Ticks and Tick-borne Diseases, 2022, 13, 101864.	2.7	7
472	Heat inactivated mycobacteria, alphaâ€Gal and zebrafish: Insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunology, 2022, 167, 139-153.	4.4	7
473	Molecular cloning and characterisation of a homologue of the alpha inhibitor of NF-κB in the griffon vulture (Gyps fulvus). Veterinary Immunology and Immunopathology, 2008, 122, 318-325.	1.2	6
474	Draft Genome Sequences of Anaplasma phagocytophilum , A.Âmarginale , and A.Âovis Isolates from Different Hosts. Genome Announcements, 2018, 6, .	0.8	6
475	Editorial: Tick-Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 2018, 8, 194.	3.9	6
476	Tuberculosis vaccination sequence effect on protection in wild boar. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 66, 101329.	1.6	6
477	Comparative Proteomic Analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) Tropical and Temperate Lineages: Uncovering Differences During Ehrlichia canis Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611113.	3.9	6
478	Exploring the Ecological Implications of Microbiota Diversity in Birds: Natural Barriers Against Avian Malaria. Frontiers in Immunology, 2022, 13, 807682.	4.8	6
479	Reduction of Mosquito Survival in Mice Vaccinated with <i>Anopheles stephensi</i> Glucose Transporter. BioMed Research International, 2017, 2017, 1-8.	1.9	5
480	Analysis of Genetic Diversity in Indian Isolates of Rhipicephalus microplus Based on Bm86 Gene Sequence. Vaccines, 2021, 9, 194.	4.4	5
481	Tick Importin-α Is Implicated in the Interactome and Regulome of the Cofactor Subolesin. Pathogens, 2021, 10, 457.	2.8	5
482	Assessment of the Safety and Efficacy of an Oral Probiotic-Based Vaccine Against Aspergillus Infection in Captive-Bred Humboldt Penguins (Spheniscus humboldti). Frontiers in Immunology, 2022, 13, .	4.8	5
483	Wine into vinegar—the fall of Cuba's biotechnology. Nature Biotechnology, 2001, 19, 905-907.	17.5	4
484	Characterization of possible correlates of protective response against Brucella ovis infection in rams immunized with the B. melitensis Rev 1 vaccine. Vaccine, 2009, 27, 3039-3044.	3.8	4
485	Humoral Immune Response of Dairy Cattle Immunized with rBm95 (KU-VAC1) derived from Thai Rhipicephalus microplus. Transboundary and Emerging Diseases, 2010, 57, 91-95.	3.0	4
486	Complete Genome Sequences of Field Isolates of Mycobacterium bovis and Mycobacterium caprae. Genome Announcements, 2015, 3, .	0.8	4

#	Article	IF	CITATIONS
487	Evidence of co-infection with Mycobacterium bovis and tick-borne pathogens in a naturally infected sheep flock. Ticks and Tick-borne Diseases, 2016, 7, 384-389.	2.7	4
488	Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. Heat Shock Proteins, 2017, , 375-398.	0.2	4
489	The Good, the Bad and the Tick. Frontiers in Cell and Developmental Biology, 2019, 7, 79.	3.7	4
490	Species occurrence of ticks in South America, and interactions with biotic and abiotic traits. Scientific Data, 2019, 6, 299.	5.3	4
491	Challenges for the Control of Poultry Red Mite (<i>Dermanyssus gallinae</i>). , 0, , .		4
492	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	1.6	4
493	The sound of the DNA language. Biological Research, 1995, 28, 197-204.	3.4	4
494	Characterization of the tick–pathogen–host interface of the tick-borne rickettsia <i>Anaplasma marginale</i> . , 2008, , 325-343.		3
495	Prevalence of Anaplasma species and habitat suitability for ticks in Sicily. Clinical Microbiology and Infection, 2009, 15, 57-58.	6.0	3
496	Global gene expression analysis in skin biopsies of European red deer experimentally infected with bluetongue virus serotypes 1 and 8. Veterinary Microbiology, 2012, 161, 26-35.	1.9	3
497	Functional Genomics of Tick Vectors Challenged with the Cattle Parasite Babesia bigemina. Methods in Molecular Biology, 2015, 1247, 475-489.	0.9	3
498	Differential expression analysis for subolesin in Rhipicephalus microplus infected with Anaplasma marginale. Experimental and Applied Acarology, 2018, 76, 229-241.	1.6	3
499	Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon, 2021, 7, e06721.	3.2	3
500	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	1.6	3
501	Molecular cloning of the gene, expression in E. coli and purification of the thermus aquaticus DNA polymerase I. Acta Biotechnologica, 1992, 12, 155-159.	0.9	2
502	A Unified Hypothesis for the Etiology of Epidemic Neuropathy. Intervirology, 1999, 42, 271-272.	2.8	2
503	Analysis of enterovirus sequences recovered from the cerebrospinal fluid of patients with epidemic neuropathy. Annals of Tropical Medicine and Parasitology, 1999, 93, 153-161.	1.6	2
504	Scientific review on Tuberculosis in wildlife in the EU. EFSA Supporting Publications, 2009, 6, 12E.	0.7	2

#	Article	IF	CITATIONS
505	Molecular survey of Rickettsial organisms in ectoparasites from a dog shelter in Northern Mexico. Veterinary Parasitology: Regional Studies and Reports, 2017, 10, 143-148.	0.5	2
506	A metaproteomics approach reveals changes in mandibular lymph node microbiota of wild boar naturally exposed to an increasing trend of Mycobacterium tuberculosis complex infection. Tuberculosis, 2019, 114, 103-112.	1.9	2
507	Targeting the Exoskeleton Elementome to Track Tick Geographic Origins. Frontiers in Physiology, 2020, 11, 572758.	2.8	2
508	Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). Parasites and Vectors, 2021, 14, 209.	2.5	2
509	The exquisite corpse for the advance of science. Arts Et Sciences, 2020, 4, .	0.1	2
510	Akirin/Subolesin regulatory mechanisms at host/tick–pathogen interactions. MicroLife, 2022, 3, .	2.1	2
511	Adaptations of the tick-borne pathogen, Anaplasma marginale, for survival in cattle and ticks. , 2003, , 9-25.		1
512	Differential Antibody Response of Cattle Immunized with <i>Anaplasma marginale</i> Derived from Bovine Erythrocytes or Cultured Tick Cells. Microscopy and Microanalysis, 2003, 9, 1410-1411.	0.4	1
513	Be Aware of Ticks When Strolling through the Park. Frontiers for Young Minds, 2016, 4, .	0.8	1
514	Research Priorities and Trends in Infections Shared with Wildlife. Wildlife Research Monographs, 2016, , 55-78.	0.9	1
515	Function of cofactor Akirin2 in the regulation of gene expression in model human Caucasian neutrophil-like HL60 cells. Bioscience Reports, 2021, 41, .	2.4	1
516	The sound of host-SARS-CoV-2 molecular interactions. Innovation(China), 2021, 2, 100126.	9.1	1
517	Visual communication and learning from COVID-19 to advance preparedness for pandemics. Exploration of Medicine, 2020, 1, 244-247.	1.5	1
518	Conflict and cooperation in tick-host-pathogen interactions contribute to increased tick fitness and survival , 2021, , 232-239.		1
519	Common Strategies, Different Mechanisms to Infect the Host: Anaplasma and Mycobacterium. , 2018, , .		0
520	Silencing expression of the defensin, varisin, in male DermacentorÂvariabilis by RNA interference results in reduced AnaplasmaÂmarginale infections. , 2008, , 17-28.		0