David E Carr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11408073/publications.pdf

Version: 2024-02-01

361413 477307 1,532 29 20 29 h-index citations g-index papers 29 29 29 916 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	A sensory bias overrides learned preferences of bumblebees for honest signals in Mimulus guttatus. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210161.	2.6	4
2	A key floral scent component (βâ€transâ€bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Functional Ecology, 2019, 33, 218-228.	3.6	31
3	A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in <i>Mimulus guttatus</i> . Ecosphere, 2018, 9, e02130.	2.2	7
4	The effect of nitrogen availability and water conditions on competition between a facultative <scp>CAM</scp> plant and an invasive grass. Ecology and Evolution, 2017, 7, 7739-7749.	1.9	10
5	Variation in reward quality and pollinator attraction: the consumer does not always get it right. AoB PLANTS, 2015, 7, .	2.3	17
6	Interactions Between Insect Herbivores and Plant Mating Systems. Annual Review of Entomology, 2014, 59, 185-203.	11.8	34
7	Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators. PLoS ONE, 2014, 9, e101463.	2.5	19
8	Tests for the joint evolution of mating system and drought escape in Mimulus. Annals of Botany, 2012, 109, 583-598.	2.9	74
9	Potential Ecological Constraints on the Evolution of Gynodioecy in Mimulus guttatus: Relative Fecundity and Pollinator Behavior in a Mixed-Sex Population. International Journal of Plant Sciences, 2011, 172, 199-210.	1.3	11
10	Variation in the response of Mimulus guttatus (Scrophulariaceae) to herbivore and virus attack. Evolutionary Ecology, 2005, 19, 15-27.	1.2	8
11	Effects of Virus Infection of <i>Mimulus guttatus </i> (Phrymaceae) on Host Plant Quality for Meadow Spittlebugs, <i>Philaenus spumarius </i> (Hemiptera: Cercopidae). Environmental Entomology, 2005, 34, 891-898.	1.4	5
12	Inbreeding depression and selfing rate of <i>Ipomoea hederacea</i> var. <i> integriuscula</i> (Convolvulaceae). American Journal of Botany, 2005, 92, 1871-1877.	1.7	31
13	Effects of herbivory and inbreeding on the pollinators and mating system of <i>Mimulus guttatus</i> (Phrymaceae). American Journal of Botany, 2005, 92, 1641-1649.	1.7	108
14	EFFECTS OF INBREEDING IN MIMULUS GUTTATUS ON TOLERANCE TO HERBIVORY IN NATURAL ENVIRONMENTS. Ecology, 2004, 85, 567-574.	3.2	63
15	The susceptibility and response of inbred and outbred Mimulus guttatus to infection by Cucumber mosaic virus. Evolutionary Ecology, 2003, 17, 85-103.	1.2	35
16	Recent approaches into the genetic basis of inbreeding depression in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1071-1084.	4.0	135
17	INBREEDING ALTERS RESISTANCE TO INSECT HERBIVORY AND HOST PLANT QUALITY IN MIMULUS GUTTATUS (SCROPHULARIACEAE). Evolution; International Journal of Organic Evolution, 2002, 56, 22.	2.3	9
18	INBREEDING ALTERS RESISTANCE TO INSECT HERBIVORY AND HOST PLANT QUALITY IN MIMULUS GUTTATUS (SCROPHULARIACEAE). Evolution; International Journal of Organic Evolution, 2002, 56, 22-30.	2.3	119

#	Article	IF	CITATION
19	Genetics underlying inbreeding depression in Mimulus with contrasting mating systems. Nature, 1998, 393, 682-684.	27.8	107
20	Five Generations of Enforced Selfing and Outcrossing in Mimulus guttatus: Inbreeding Depression Variation at the Population and Family Level. Evolution; International Journal of Organic Evolution, 1997, 51, 54.	2.3	60
21	The Effects of Five Generations of Enforced Selfing on Potential Male and Female Function in Mimulus guttatus. Evolution; International Journal of Organic Evolution, 1997, 51, 1797.	2.3	29
22	FIVE GENERATIONS OF ENFORCED SELFING AND OUTCROSSING IN <i>MIMULUS GUTTATUS</i> : INBREEDING DEPRESSION VARIATION AT THE POPULATION AND FAMILY LEVEL. Evolution; International Journal of Organic Evolution, 1997, 51, 54-65.	2.3	131
23	THE RELATIONSHIP BETWEEN MATINGâ€SYSTEM CHARACTERS AND INBREEDING DEPRESSION IN ⟨i⟩MIMULUS GUTTATUS⟨ i⟩. Evolution; International Journal of Organic Evolution, 1997, 51, 363-372.	2.3	59
24	THE EFFECTS OF FIVE GENERATIONS OF ENFORCED SELFING ON POTENTIAL MALE AND FEMALE FUNCTION IN <i>MIMULUS GUTTATUS</i> . Evolution; International Journal of Organic Evolution, 1997, 51, 1797-1807.	2.3	71
25	Inbreeding depression in two species of Mimulus (Scrophulariaceae) with contrasting mating systems. American Journal of Botany, 1996, 83, 586-593.	1.7	66
26	Inbreeding Depression in Two Species of Mimulus (Scrophulariaceae) with Contrasting Mating Systems. American Journal of Botany, 1996, 83, 586.	1.7	29
27	Inbreeding depression under a competitive regime in Mimulus guttatus: consequences for potential male and female function. Heredity, 1995, 75, 437-445.	2.6	84
28	Levels of genetic variation and covariation for Mimulus (Scrophulariaceae) floral traits. Heredity, 1994, 72, 606-618.	2.6	121
29	THE MOLECULAR CLOCK AND THE RELATIONSHIP BETWEEN POPULATION SIZE AND GENERATION TIME. Evolution; International Journal of Organic Evolution, 1993, 47, 688-690.	2.3	55