
Devyani Deshpande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11404350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Antibiotic Resistance Arrow of Time: Efflux Pump Induction Is a General First Step in the Evolution of Mycobacterial Drug Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 4806-4815.	3.2	158
2	Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests. Clinical Infectious Diseases, 2016, 63, S63-S74.	5.8	102
3	Systematic Review and Meta-analyses of the Effect of Chemotherapy on Pulmonary Mycobacterium abscessus Outcomes and Disease Recurrence. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	99
4	Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	81
5	Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S293-S302.	5.8	74
6	Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular <i>Mycobacterium avium</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 1728-1733.	3.2	57
7	Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Science Advances, 2017, 3, e1701102.	10.3	56
8	Tigecycline Is Highly Efficacious against Mycobacterium abscessus Pulmonary Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 2895-2900.	3.2	54
9	Meta-analyses and the evidence base for microbial outcomes in the treatment of pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i3-i19.	3.0	51
10	Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated <i>Mycobacterium avium</i> Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 2534-2539.	3.2	46
11	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	5.8	45
12	Failure of the Amikacin, Cefoxitin, and Clarithromycin Combination Regimen for Treating Pulmonary Mycobacterium abscessus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 6374-6376.	3.2	41
13	Amikacin Pharmacokinetics/Pharmacodynamics in a Novel Hollow-Fiber Mycobacterium abscessus Disease Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 1242-1248.	3.2	41
14	A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clinical Infectious Diseases, 2016, 63, S95-S101.	5.8	40
15	A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine, 2016, 6, 126-138.	6.1	40
16	Linezolid for Infants and Toddlers With Disseminated Tuberculosis: First Steps. Clinical Infectious Diseases, 2016, 63, S80-S87.	5.8	39
17	Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo. Clinical Infectious Diseases, 2016, 63, S88-S94.	5.8	37
18	Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks. Clinical Infectious Diseases, 2016, 63, S102-S109.	5.8	34

Devyani Deshpande

#	Article	IF	CITATIONS
19	Tedizolid is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i30-i35.	3.0	34
20	Amikacin Optimal Exposure Targets in the Hollow-Fiber System Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5922-5927.	3.2	31
21	The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. Journal of Antimicrobial Chemotherapy, 2017, 72, i36-i42.	3.0	29
22	Ethionamide Pharmacokinetics/Pharmacodynamics-derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S317-S326.	5.8	29
23	Antibacterial and Sterilizing Effect of Benzylpenicillin in Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	29
24	Thioridazine as Chemotherapy for Mycobacterium avium Complex Diseases. Antimicrobial Agents and Chemotherapy, 2016, 60, 4652-4658.	3.2	27
25	Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 2157-2163.	3.2	26
26	Transformation Morphisms and Time-to-Extinction Analysis That Map Therapy Duration From Preclinical Models to Patients With Tuberculosis: Translating From Apples to Oranges. Clinical Infectious Diseases, 2018, 67, S349-S358.	5.8	26
27	The Sterilizing Effect of Intermittent Tedizolid for Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S336-S341.	5.8	26
28	Moxifloxacin's Limited Efficacy in the Hollow-Fiber Model of Mycobacterium abscessus Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 3779-3785.	3.2	25
29	Linezolid as treatment for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i24-i29.	3.0	25
30	A novel ceftazidime/avibactam, rifabutin, tedizolid and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i48-i53.	3.0	25
31	Gatifloxacin Pharmacokinetics/Pharmacodynamics–based Optimal Dosing for Pulmonary and Meningeal Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S274-S283.	5.8	23
32	Multiparameter Responses to Tedizolid Monotherapy and Moxifloxacin Combination Therapy Models of Children With Intracellular Tuberculosis. Clinical Infectious Diseases, 2018, 67, S342-S348.	5.8	18
33	Minocycline Immunomodulates via Sonic Hedgehog Signaling and Apoptosis and Has Direct Potency Against Drug-Resistant Tuberculosis. Journal of Infectious Diseases, 2019, 219, 975-985.	4.0	18
34	Efficacy Versus Hepatotoxicity of High-dose Rifampin, Pyrazinamide, and Moxifloxacin to Shorten Tuberculosis Therapy Duration: There Is Still Fight in the Old Warriors Yet!. Clinical Infectious Diseases, 2018, 67, S359-S364.	5.8	17
35	Artificial intelligence–derived 3-Way Concentration-dependent Antagonism of Gatifloxacin, Pyrazinamide, and Rifampicin During Treatment of Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S284-S292.	5.8	16
36	Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. Journal of Antimicrobial Chemotherapy, 2019, 74, 1952-1961.	3.0	15

Devyani Deshpande

#	Article	IF	CITATIONS
37	A â€~shock and awe' thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i43-i47.	3.0	14
38	Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. Journal of Antimicrobial Chemotherapy, 2020, 75, 392-399.	3.0	14
39	A Combination Regimen Design Program Based on Pharmacodynamic Target Setting for Childhood Tuberculosis: Design Rules for the Playground. Clinical Infectious Diseases, 2016, 63, S75-S79.	5.8	13
40	Once-a-week tigecycline for the treatment of drug-resistant TB. Journal of Antimicrobial Chemotherapy, 2019, 74, 1607-1617.	3.0	13
41	A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/pharmacodynamics and mathematical forecasting. Journal of Antimicrobial Chemotherapy, 2017, 72, i54-i60.	3.0	11
42	Failure of the azithromycin and ethambutol combination regimen in the hollow-fibre system model of pulmonary Mycobacterium avium infection is due to acquired resistance. Journal of Antimicrobial Chemotherapy, 2017, 72, i20-i23.	3.0	11
43	Pharmacokinetic/pharmacodynamic-based treatment of disseminatedMycobacterium avium. Future Microbiology, 2011, 6, 433-439.	2.0	10
44	Evaluation of Ceftriaxone Plus Avibactam in an Intracellular Hollow Fiber Model of Tuberculosis: Implications for the Treatment of Disseminated and Meningeal Tuberculosis in Children. Pediatric Infectious Disease Journal, 2020, 39, 1092-1100.	2.0	10
45	Tedizolid, Faropenem, and Moxifloxacin Combination With Potential Activity Against Nonreplicating Mycobacterium tuberculosis. Frontiers in Pharmacology, 2020, 11, 616294.	3.5	8
46	Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. International Journal of Infectious Diseases, 2021, 104, 680-684.	3.3	7
47	Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. Journal of Global Antimicrobial Resistance, 2021, 24, 403-410.	2.2	7
48	Novel Short-Course Therapy and Morphism Mapping for Clinical Pulmonary Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	6