Marsel Mesulam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11400244/publications.pdf

Version: 2024-02-01

35 papers

13,028 citations

147801 31 h-index 36 g-index

40 all docs

40 docs citations

times ranked

40

16087 citing authors

#	Article	IF	CITATIONS
1	Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 2011, 134, 2456-2477.	7.6	3,913
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
3	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
4	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
5	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
6	Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 2008, 63, 709-719.	5.3	457
7	The Cholinergic Lesion of Alzheimer's Disease: Pivotal Factor or Side Show?. Learning and Memory, 2004, 11, 43-49.	1.3	402
8	Cholinergic nucleus basalis tauopathy emerges early in the agingâ€MClâ€AD continuum. Annals of Neurology, 2004, 55, 815-828.	5.3	337
9	Widely Spread Butyrylcholinesterase Can Hydrolyze Acetylcholine in the Normal and Alzheimer Brain. Neurobiology of Disease, 2002, 9, 88-93.	4.4	265
10	Diagnostic Criteria for the Behavioral Variant of Frontotemporal Dementia (bvFTD): Current Limitations and Future Directions. Alzheimer Disease and Associated Disorders, 2007, 21, S14-S18.	1.3	219
11	Quantitative Template for Subtyping Primary Progressive Aphasia. Archives of Neurology, 2009, 66, 1545-51.	4.5	205
12	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	3.1	174
13	TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genetics, 2019, 15, e1007947.	3.5	171
14	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
15	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166
16	Cholinergic denervation in a pure multi-infarct state. Neurology, 2003, 60, 1183-1185.	1.1	152
17	Progranulin Mutations in Primary Progressive Aphasia. Archives of Neurology, 2007, 64, 43.	4.5	146
18	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.1	144

#	Article	IF	CITATIONS
19	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
20	FUS Interacts with HSP60 to Promote Mitochondrial Damage. PLoS Genetics, 2015, 11, e1005357.	3.5	143
21	Representation, inference, and transcendent encoding in neurocognitive networks of the human brain. Annals of Neurology, 2008, 64, 367-378.	5.3	124
22	Neurology of anomia in the semantic variant of primary progressive aphasia. Brain, 2009, 132, 2553-2565.	7.6	119
23	The evolving landscape of human cortical connectivity: Facts and inferences. Neurolmage, 2012, 62, 2182-2189.	4.2	113
24	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
25	2014 Report on the Milestones for the US National Plan to Address Alzheimer's Disease. , 2014, 10, S430-S452.		64
26	Defining Neurocognitive Networks in the BOLD New World of Computed Connectivity. Neuron, 2009, 62, 1-3.	8.1	63
27	Primary progressive aphasia: A dementia of the language network. Dementia E Neuropsychologia, 2013, 7, 2-9.	0.8	58
28	An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel \hat{l}^2 -structure and induces TDP-43 redistribution. Human Molecular Genetics, 2014, 23, 6863-6877.	2.9	48
29	Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathologica Communications, 2017, 5, 96.	5.2	38
30	Primary progressive aphasia and kindred disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 573-587.	1.8	35
31	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Molecular Neurodegeneration, 2020, 15, 57.	10.8	33
32	PRNP heterozygosity linked to primary progressive aphasia. Annals of Neurology, 2006, 60, 617-617.	5.3	31
33	Cholinergic Aspects of Aging and Alzheimer's Disease. Biological Psychiatry, 2012, 71, 760-761.	1.3	25
34	The CARE Pathway Model for Dementia. Psychiatric Clinics of North America, 2015, 38, 333-352.	1.3	23
35	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	3.3	12