Teja Kattenborn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1140000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 5, 100018.	3.1	19
2	Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird's eye (UAS) perspective. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102262.	2.8	21
3	The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology. Ecological Indicators, 2021, 121, 107062.	6.3	23
4	Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173, 24-49.	11.1	653
5	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
6	Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170, 205-215.	11.1	175
7	Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote Sensing in Ecology and Conservation, 2020, 6, 472-486.	4.3	82
8	Unmanned aerial vehicleâ€based mapping of turfâ€banked solifluction lobe movement and its relation to material, geomorphometric, thermal and vegetation properties. Permafrost and Periglacial Processes, 2020, 31, 97-109.	3.4	17
9	Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 27-40.	11.1	55
10	Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sensing of Environment, 2019, 223, 320-335.	11.0	112
11	Advantages of retrieving pigment content [î¼g/cm2] versus concentration [%] from canopy reflectance. Remote Sensing of Environment, 2019, 230, 111195.	11.0	38
12	Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocks. Remote Sensing of Environment, 2019, 231, 111217.	11.0	27
13	A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018. Scientific Data, 2019, 6, 78.	5.3	33
14	Radiative transfer modelling reveals why canopy reflectance follows function. Scientific Reports, 2019, 9, 6541.	3.3	18
15	How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote Sensing in Ecology and Conservation, 2019, 5, 302-317.	4.3	52
16	UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 2019, 227, 61-73.	11.0	151
17	Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports, 2019, 9, 17656.	3.3	146
18	Proximal VIS-NIR spectrometry to retrieve substance concentrations in surface waters using partial least squares modelling. Water Science and Technology: Water Supply, 2019, 19, 1204-1211.	2.1	7

Teja Kattenborn

#	Article	IF	CITATIONS
19	Differentiating plant functional types using reflectance: which traits make the difference?. Remote Sensing in Ecology and Conservation, 2019, 5, 5-19.	4.3	69
20	Modis-Based Grassland Trends Within and Around the Kekexili Core Protection Zone of the Sanjiangyuan Nature Reserve. , 2018, , .		0
21	Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 2018, 4, 432-439.	9.3	212
22	Linking plant strategies and plant traits derived by radiative transfer modelling. Journal of Vegetation Science, 2017, 28, 717-727.	2.2	43
23	Detecting the spread of invasive species in central Chile with a Sentinel-2 time-series. , 2017, , .		6
24	Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sensing of Environment, 2017, 201, 12-23.	11.0	70
25	Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications?. Forestry, 2017, 90, 613-631.	2.3	39
26	Linking plant strategies (CSR) and remotely sensed plant traits. , 2016, , .		0
27	Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images. European Journal of Remote Sensing, 2015, 48, 245-261.	3.5	40
28	Mapping forest biomass from space – Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 359-367.	2.8	58
29	Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 48-56.	11.1	117
30	Segmentation of Forest to Tree Objects. Managing Forest Ecosystems, 2014, , 89-112.	0.9	22
31	PILOT STUDY ON THE RETRIEVAL OF DBH AND DIAMETER DISTRIBUTION OF DECIDUOUS FOREST STANDS USING CAST SHADOWS IN UAV-BASED ORTHOMOSAICS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-1, 93-99.	0.0	7
32	Automatic Single Tree Detection in Plantations using UAV-based Photogrammetric Point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-3, 139-144.	0.2	55