
Gérard Friedlander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11399826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The naked truth: a comprehensive clarification and classification of current â€~myths' in naked moleâ€rat biology. Biological Reviews, 2022, 97, 115-140.	10.4	62
2	Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin. Aging, 2022, 14, 3728-3756.	3.1	6
3	Tubular Acidification Defect in Adults with Sickle Cell Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 16-24.	4.5	13
4	Measured glomerular filtration rate (GFR) significantly and rapidly decreases after radical cystectomy for bladder cancer. Scientific Reports, 2020, 10, 16145.	3.3	5
5	Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Research in Cardiology, 2020, 115, 51.	5.9	23
6	The primary cilium and lipophagy translate mechanical forces to direct metabolic adaptation of kidney epithelial cells. Nature Cell Biology, 2020, 22, 1091-1102.	10.3	45
7	Signaling pathways predisposing to chronic kidney disease progression. JCI Insight, 2020, 5, .	5.0	6
8	DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats, Heterocephalus glaber. Aging, 2020, 12, 4394-4406.	3.1	20
9	Adverse events associated with currently used medical treatments for cystinuria and treatment goals: results from a series of 442 patients in France. BJU International, 2019, 124, 849-861.	2.5	30
10	Novel function of PiT1/SLC20A1 in LPS-related inflammation and wound healing. Scientific Reports, 2019, 9, 1808.	3.3	27
11	The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging, 2019, 11, 4783-4800.	3.1	43
12	Hepatic Production of Fibroblast Growth Factor 23 in Autosomal Dominant Polycystic Kidney Disease. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2319-2328.	3.6	23
13	Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors. European Radiology, 2017, 27, 651-659.	4.5	13
14	What is the significance of end-stage renal disease risk estimation in living kidney donors?. Transplant International, 2017, 30, 799-806.	1.6	6
15	The Association Between Fibroblast Growth FactorÂ23 and Renal Transplantation Outcome IsÂModified by Follow-up Duration and GlomerularÂFiltration Rate Assessment Method. Kidney International Reports, 2017, 2, 881-892.	0.8	9
16	Carboxy-terminal fragment of fibroblast growth factor 23 induces heart hypertrophy in sickle cell disease. Haematologica, 2017, 102, e33-e35.	3.5	14
17	Vitamin D3 Prevents Calcium-Induced Progression of Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer Research, 2017, 77, 355-365.	0.9	38
18	MITF – A controls branching morphogenesis and nephron endowment. PLoS Genetics, 2017, 13, e1007093.	3.5	12

#	Article	IF	CITATIONS
19	Association of mGFR of the Remaining Kidney Divided by Its Volume before Donation with Functional Gain in mGFR among Living Kidney Donors. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1369-1376.	4.5	16
20	Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nature Cell Biology, 2016, 18, 657-667.	10.3	127
21	Stat3 Controls Tubulointerstitial Communication during CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 3690-3705.	6.1	75
22	Disruption of the Phosphate Transporter Pit1 in Hepatocytes Improves Glucose Metabolism and Insulin Signaling by Modulating the USP7/IRS1 Interaction. Cell Reports, 2016, 16, 2736-2748.	6.4	28
23	Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nature Communications, 2016, 7, 10330.	12.8	88
24	Assessment of hydration status in a large population. British Journal of Nutrition, 2015, 113, 147-158.	2.3	104
25	Antiâ€ŧnflammatory properties of Lipidosterolic extract of Serenoa repens (Permixon®) in a mouse model of prostate hyperplasia. Prostate, 2015, 75, 706-722.	2.3	36
26	CKD and Its Risk Factors among Patients with Cystinuria. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 842-851.	4.5	71
27	High Milk Consumption Does Not Affect Prostate Tumor Progression in Two Mouse Models of Benign and Neoplastic Lesions. PLoS ONE, 2015, 10, e0125423.	2.5	19
28	Determination of optimal vitamin <scp>D₃</scp> dosing regimens in <scp>HIV</scp> â€infected paediatric patients using a population pharmacokinetic approach. British Journal of Clinical Pharmacology, 2014, 78, 1113-1121.	2.4	5
29	Inhibition of the mTORC Pathway in the Antiphospholipid Syndrome. New England Journal of Medicine, 2014, 371, 303-312.	27.0	282
30	The Kidney as a Reservoir for HIV-1 after Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2014, 25, 407-419.	6.1	121
31	Determination of optimal cholecalciferol treatment in renal transplant recipients using a population pharmacokinetic approach. European Journal of Clinical Pharmacology, 2013, 69, 499-506.	1.9	15
32	AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nature Medicine, 2013, 19, 1288-1296.	30.7	187
33	Vitamin D Deficiency and Insufficiency in HIV-infected Children and Young Adults. Pediatric Infectious Disease Journal, 2013, 32, 1240-1244.	2.0	26
34	Vitamin D Status and Outcomes After Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2013, 24, 831-841.	6.1	93
35	EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro. Blood, 2013, 121, 666-678.	1.4	30
36	Mice with Hypomorphic Expression of the Sodium-Phosphate Cotransporter PiT1/Slc20a1 Have an Unexpected Normal Bone Mineralization. PLoS ONE, 2013, 8, e65979.	2.5	34

#	Article	IF	CITATIONS
37	Plasma Fibroblast Growth Factor 23 Concentration Is Increased and Predicts Mortality in Patients on the Liver-Transplant Waiting List. PLoS ONE, 2013, 8, e66182.	2.5	57
38	Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: a prospective observational cohort study. BMC Nephrology, 2012, 13, 83.	1.8	70
39	Effects of Cinacalcet in Renal Transplant Patients with Hyperparathyroidism. American Journal of Nephrology, 2012, 35, 341-348.	3.1	29
40	A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism. PLoS ONE, 2012, 7, e34764.	2.5	44
41	A transcriptional network underlies susceptibility to kidney disease progression. EMBO Molecular Medicine, 2012, 4, 825-839.	6.9	18
42	Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes. PLoS ONE, 2012, 7, e34879.	2.5	3
43	Vitamin D metabolism and activity in the parathyroid gland. Molecular and Cellular Endocrinology, 2011, 347, 30-41.	3.2	35
44	Vitamine D : un champ qui s'élargit. Revue Francophone Des Laboratoires, 2011, 2011, 32-35.	0.0	0
45	Phosphate Handling: New Genes, New Molecules. Hormone Research in Paediatrics, 2011, 76, 71-75.	1.8	4
46	TGF-α Mediates Genetic Susceptibility to Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 327-335.	6.1	49
47	Identification of a Novel Transport-independent Function of PiT1/SLC20A1 in the Regulation of TNF-induced Apoptosis. Journal of Biological Chemistry, 2010, 285, 34408-34418.	3.4	73
48	Welcome to MEPE in the renal proximal tubule. Nephrology Dialysis Transplantation, 2010, 25, 3135-3136.	0.7	3
49	Vitamin D and primary hyperparathyroidism (PHPT). Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 199-203.	2.5	38
50	Genetic Disorders of Renal Phosphate Transport. New England Journal of Medicine, 2010, 362, 2399-2409.	27.0	94
51	Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. Journal of Clinical Investigation, 2010, 120, 4065-4076.	8.2	310
52	The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development. PLoS ONE, 2010, 5, e9148.	2.5	95
53	MHC Class II Deficiency. , 2009, , 1306-1308.		0
54	Identification of a Novel Function of PiT1 Critical for Cell Proliferation and Independent of Its Phosphate Transport Activity. Journal of Biological Chemistry, 2009, 284, 31363-31374.	3.4	127

#	Article	IF	CITATIONS
55	Effects of vitamin D supplementation on the calcium–phosphate balance in renal transplant patients. Kidney International, 2009, 75, 646-651.	5.2	99
56	Latest findings in phosphate homeostasis. Kidney International, 2009, 75, 882-889.	5.2	143
57	Genetic causes of renal lithiasis. IBMS BoneKEy, 2009, 6, 357-367.	0.0	4
58	<i>NHERF1</i> Mutations and Responsiveness of Renal Parathyroid Hormone. New England Journal of Medicine, 2008, 359, 1128-1135.	27.0	178
59	Dialogue entre l'angiotensine et le récepteur du facteur de croissance épidermique dans les maladies rénales chroniques : vers une nouvelle approche thérapeutique. Bulletin De L'Academie Nationale De Medecine, 2006, 190, 927-934.	0.0	0
60	Recent findings in phosphate homeostasis. Current Opinion in Nephrology and Hypertension, 2005, 14, 318-324.	2.0	52
61	Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nature Medicine, 2005, 11, 867-874.	30.7	312
62	Transport de phosphate et lithiase rénale. Bulletin De L'Academie Nationale De Medecine, 2005, 189, 309-319.	0.0	1
63	Hypophosphatemia and Calcium Nephrolithiasis. Nephron Experimental Nephrology, 2004, 98, e50-e54.	2.2	18
64	Recovery of Na-glucose cotransport activity after renal ischemia is impaired in mice lacking vimentin. American Journal of Physiology - Renal Physiology, 2004, 287, F960-F968.	2.7	19
65	Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Current Opinion in Nephrology and Hypertension, 2004, 13, 675-681.	2.0	30
66	Shear-stress-responsive signal transduction mechanisms in renal proximal tubule cells. Current Opinion in Nephrology and Hypertension, 2003, 12, 31-34.	2.0	15
67	JunD protects against chronic kidney disease by regulating paracrine mitogens. Journal of Clinical Investigation, 2003, 112, 843-852.	8.2	31
68	JunD protects against chronic kidney disease by regulating paracrine mitogens. Journal of Clinical Investigation, 2003, 112, 843-852.	8.2	59
69	Nephrolithiasis and Osteoporosis Associated with Hypophosphatemia Caused by Mutations in the Type 2a Sodium–Phosphate Cotransporter. New England Journal of Medicine, 2002, 347, 983-991.	27.0	322
70	Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts. Journal of Cell Science, 2002, 115, 713-24.	2.0	58
71	Proliferation and Remodeling of the Peritubular Microcirculation after Nephron Reduction. American Journal of Pathology, 2001, 159, 547-560.	3.8	68
72	Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. American Journal of Physiology - Renal Physiology, 2001, 281, F751-F762.	2.7	91

Gérard Friedlander

#	Article	IF	CITATIONS
73	Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. American Journal of Physiology - Renal Physiology, 2001, 280, F636-F645.	2.7	85
74	Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney International, 2001, 59, 210-221.	5.2	25
75	Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney International, 2001, 60, 272-276.	5.2	84
76	Hypoxia Reduces Alveolar Epithelial Sodium and Fluid Transport in Rats. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 554-561.	2.9	161
77	Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. Journal of Clinical Investigation, 2000, 106, 225-234.	8.2	163
78	Sodium Restriction Decreases AP-1 Activation after Nephron Reduction in the Rat: Role in the Progression of Renal Lesions. Nephron Experimental Nephrology, 2000, 8, 104-114.	2.2	14
79	Using Transgenic Mice to Analyze the Mechanisms of Progression of Chronic Renal Failure. Journal of the American Society of Nephrology: JASN, 2000, 11, S144-S148.	6.1	10
80	NaPO ₄ cotransport type III (PiT1) expression in human embryonic kidney cells and regulation by PTH. American Journal of Physiology - Renal Physiology, 1999, 277, F543-F551.	2.7	14
81	Effect of lipid-lowering strategies on tubular cell biology. Kidney International, 1999, 56, S92-S96.	5.2	8
82	Halothane Stimulates a Na+ H+ Antiporter Involved in the Regulation of Intracellular pH in Alveolar Epithelial Cells. Anesthesia and Analgesia, 1999, 89, 480-483.	2.2	6
83	Halothane Decreases Na,K-ATPase, and Na Channel Activity in Alveolar Type II CellsÂ. Anesthesiology, 1998, 88, 1606-1613.	2.5	24
84	Regulation of Phosphate Transport in the Renal Tubule through Parathyroid Hormone Receptor: Unexpected Pathways. Nephron Experimental Nephrology, 1998, 6, 282-287.	2.2	3
85	Hypoxia Downregulates Expression and Activity of Epithelial Sodium Channels in Rat Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 508-518.	2.9	133
86	Overexpression of ecto-5′-nucleotidase promotes P-glycoprotein expression in renal epithelial cells. Kidney International, 1997, 52, 953-961.	5.2	9
87	HMG-CoA reductase inhibitors induce apoptosis in mouse proximal tubular cells in primary culture. Kidney International, 1997, 52, 962-972.	5.2	39
88	Lovastatin-induced inhibition of renal epithelial tubular cell proliferation involves a p21 activated, AP-1-dependent pathway. Kidney International, 1997, 52, 1016-1027.	5.2	64
89	Subtotal nephrectomy alters tubular function: Effect of phosphorus restriction. Kidney International, 1997, 52, 1550-1560.	5.2	16
90	Role of renal handling of extracellular nucleotides in modulation of phosphate transport. Kidney International, 1996, 49, 1019-1022.	5.2	9

Gérard Friedlander

#	Article	IF	CITATIONS
91	Inhibition of Ecto-5′-nucleotidase by Nitric Oxide Donors. Journal of Biological Chemistry, 1996, 271, 4659-4664.	3.4	39
92	Extracellular nucleotides as modulators of renal tubular transport. Kidney International, 1995, 47, 1500-1506.	5.2	17
93	Insulin-like Growth Factor I, a Unique Calcium-dependent Stimulator of 1,25-Dihydroxyvitamin D3 Production. Journal of Biological Chemistry, 1995, 270, 25461-25467.	3.4	89
94	Dipyridamole for Renal Phosphate Leak?. New England Journal of Medicine, 1994, 331, 58-59.	27.0	13
95	Primary culture of rabbit proximal tubules as a cellular model to study nephrotoxicity of xenobiotics. Kidney International, 1993, 44, 13-18.	5.2	28
96	Sphingomyelin and cholesterol modulate sodium coupled uptakes in proximal tubular cells. Kidney International, 1992, 41, 983-991.	5.2	15
97	Membrane fluidity and transport properties in epithelia. Kidney International, 1992, 42, 825-836.	5.2	95
98	Increase in membrane fluidity modulates sodium-coupled uptakes and cyclic AMP synthesis by renal proximal tubular cells in primary culture. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1022, 1-7.	2.6	35
99	Tumor necrosis factor stimulates prostaglandin production and cyclic AMP levels in rat cultured mesangial cells. FEBS Letters, 1988, 239, 50-54.	2.8	97
100	Protein kinase C activators and bradykinin selectively inhibit vasopressin-stimulated cAMP synthesis in MDCK cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 929, 311-317.	4.1	14
101	Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 1987, 903, 341-348.	2.6	52
102	Somatostatin and α2-adrenergic agonists selectively inhibit vasopressin-induced cyclic AMP accumulation in MDCK cells. FEBS Letters, 1986, 198, 38-42.	2.8	31
103	PGE2 binding sites and PG-stimulated cyclic AMP accumulation in rat isolated glomeruli and glomerular cultured cells. Molecular and Cellular Endocrinology, 1983, 30, 201-214.	3.2	43