Jan Vanderborght

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1139977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 2008, 44, .	4.2	530
2	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	2.2	445
3	On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 2014, 516, 76-96.	5.4	369
4	Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 2002, 267, 125-146.	5.4	352
5	Use of a Threeâ€Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone Journal, 2008, 7, 1079-1088.	2.2	320
6	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	23.0	316
7	Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 2002, 267, 125-146.	5.4	249
8	Review of Dispersivities for Transport Modeling in Soils. Vadose Zone Journal, 2007, 6, 29-52.	2.2	246
9	Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biology and Biochemistry, 2013, 57, 1003-1022.	8.8	239
10	Upscaling Hydraulic Properties and Soil Water Flow Processes in Heterogeneous Soils: A Review. Vadose Zone Journal, 2007, 6, 1-28.	2.2	215
11	Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resources Research, 2010, 46, .	4.2	178
12	Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophysical Research Letters, 2007, 34, .	4.0	177
13	A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrology and Earth System Sciences, 2012, 16, 2957-2971.	4.9	164
14	Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resources Research, 2015, 51, 2616-2633.	4.2	149
15	20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Research, 2014, 50, 294-306.	11.3	137
16	Root Water Uptake: From Threeâ€Dimensional Biophysical Processes to Macroscopic Modeling Approaches. Vadose Zone Journal, 2013, 12, 1-16.	2.2	128
17	CRootBox: a structural–functional modelling framework for root systems. Annals of Botany, 2018, 121, 1033-1053.	2.9	123
18	Threeâ€Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics. Vadose Zone Journal, 2011, 10, 412-424.	2.2	102

#	Article	IF	CITATIONS
19	Comparison of Three Methods to Calibrate TDR for Monitoring Solute Movement in Undisturbed Soil. Soil Science Society of America Journal, 1996, 60, 747-754.	2.2	93
20	Modelling Water Flow and Solute Transport in Heterogeneous Soils: A Review of Recent Approaches. Biosystems Engineering, 1998, 70, 231-256.	0.4	93
21	Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography. Near Surface Geophysics, 2010, 8, 553-561.	1.2	93
22	Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resources Research, 2005, 41, .	4.2	89
23	Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resources Research, 2010, 46, .	4.2	88
24	Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 2018, 10, 1237-1263.	9.9	85
25	Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bulletin of the American Meteorological Society, 2015, 96, 1765-1787.	3.3	80
26	Changes in Soil Water Content Resulting from <i>Ricinus</i> Root Uptake Monitored by Magnetic Resonance Imaging. Vadose Zone Journal, 2008, 7, 1010-1017.	2.2	76
27	FOSMEX: Forest Soil Moisture Experiments With Microwave Radiometry. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 727-735.	6.3	75
28	TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environmental Earth Sciences, 2016, 75, 1.	2.7	73
29	Monitoring Solute Transport in a Multiâ€Layered Sandy Lysimeter using Time Domain Reflectometry. Soil Science Society of America Journal, 1995, 59, 337-344.	2.2	71
30	Two-dimensional characterization of hydraulic heterogeneity by multiple pumping tests. Water Resources Research, 2007, 43, .	4.2	71
31	Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances. Water Resources Research, 2014, 50, 8891-8906.	4.2	70
32	Measured microwave radiative transfer properties of a deciduous forest canopy. Remote Sensing of Environment, 2007, 109, 523-532.	11.0	67
33	Characterization and Understanding of Bare Soil Respiration Spatial Variability at Plot Scale. Vadose Zone Journal, 2009, 8, 762-771.	2.2	67
34	Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column. Hydrology and Earth System Sciences, 2015, 19, 4067-4080.	4.9	67
35	Heat and water transport in soils and across the soilâ€atmosphere interface: 1. Theory and different model concepts. Water Resources Research, 2017, 53, 1057-1079.	4.2	67
36	Solute Transport for Steady tate and Transient Flow in Soils with and without Macropores. Soil Science Society of America Journal, 2000, 64, 1305-1317.	2.2	65

#	Article	IF	CITATIONS
37	Overview of inert tracer experiments in key belgian soil types: Relation between transport and soil morphological and hydraulic properties. Water Resources Research, 2001, 37, 2873-2888.	4.2	65
38	Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2 transport and carbon turnover model. Ecological Modelling, 2008, 214, 271-283.	2.5	64
39	Atrazine Soil Core Residue Analysis from an Agricultural Field 21 Years after Its Ban. Journal of Environmental Quality, 2014, 43, 1450-1459.	2.0	62
40	Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 1728-1743.	6.3	61
41	Efficient random walk particle tracking algorithm for advectiveâ€dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resources Research, 2011, 47, .	4.2	58
42	Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data. Vadose Zone Journal, 2018, 17, 1-19.	2.2	57
43	Predicting subgrid variability of soil water content from basic soil information. Geophysical Research Letters, 2015, 42, 789-796.	4.0	56
44	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	2.2	56
45	Effects of Soil Type and Water Flux on Solute Transport. Soil Science Society of America Journal, 1997, 61, 372.	2.2	55
46	Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests. Journal of Hydrology, 2015, 524, 680-695.	5.4	53
47	Numerical experiments on the sensitivity of runoff generation to the spatial variation of soil hydraulic properties. Journal of Hydrology, 2006, 326, 43-58.	5.4	50
48	Comparison of Heterogeneous Transport Processes Observed with Electrical Resistivity Tomography in Two Soils. Vadose Zone Journal, 2010, 9, 336-349.	2.2	49
49	Noninvasive Monitoring of Soil Water Dynamics in Mixed Cropping Systems: A Case Study in Ratchaburi Province, Thailand. Vadose Zone Journal, 2013, 12, 1-12.	2.2	49
50	Identification of Transport Processes in Soil Cores Using Fluorescent Tracers. Soil Science Society of America Journal, 2002, 66, 774-787.	2.2	48
51	Effect of Local Soil Hydraulic Conductivity Drop Using a Threeâ€Đimensional Root Water Uptake Model. Vadose Zone Journal, 2008, 7, 1089-1098.	2.2	48
52	Implementation of a Microscopic Soil–Root Hydraulic Conductivity Drop Function in a Threeâ€Dimensional Soil–Root Architecture Water Transfer Model. Vadose Zone Journal, 2009, 8, 783-792.	2.2	48
53	Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models. Hydrology and Earth System Sciences, 2014, 18, 1723-1743.	4.9	48
54	Parameterization of Root Water Uptake Models Considering Dynamic Root Distributions and Water Uptake Compensation. Vadose Zone Journal, 2018, 17, 1-21.	2.2	47

#	Article	IF	CITATIONS
55	How to Control the Lysimeter Bottom Boundary to Investigate the Effect of Climate Change on Soil Processes?. Vadose Zone Journal, 2016, 15, 1-15.	2.2	46
56	Determining Convective Lognormal Solute Transport Parameters from Resident Concentration Data. Soil Science Society of America Journal, 1996, 60, 1306-1317.	2.2	45
57	A Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils. Vadose Zone Journal, 2005, 4, 206.	2.2	45
58	Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions. Hydrology and Earth System Sciences, 2018, 22, 2449-2470.	4.9	44
59	Characterisation of the field-saturated hydraulic conductivity on a hillslope: in situ single ring pressure infiltrometer measurements. Journal of Hydrology, 2002, 263, 217-229.	5.4	43
60	Construction of Minirhizotron Facilities for Investigating Root Zone Processes. Vadose Zone Journal, 2016, 15, 1-13.	2.2	43
61	Soil Water Extraction with a Suction Cup: Results of Numerical Simulations. Vadose Zone Journal, 2005, 4, 899-907.	2.2	42
62	Investigating Preferential Flow Processes in a Forest Soil Using Time Domain Reflectometry and Electrical Resistivity Tomography. Vadose Zone Journal, 2010, 9, 350-361.	2.2	42
63	Transformation and Sorption of the Veterinary Antibiotic Sulfadiazine in Two Soils: A Short-Term Batch Study. Environmental Science & Technology, 2010, 44, 4651-4657.	10.0	42
64	Analysis of steady state chloride transport through two heterogeneous field soils. Water Resources Research, 1998, 34, 2539-2550.	4.2	40
65	A Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils. Vadose Zone Journal, 2005, 4, 206-221.	2.2	40
66	Dissolved Organic Carbon Fluxes under Bare Soil. Journal of Environmental Quality, 2007, 36, 597-606.	2.0	40
67	Noninvasive 3â€Ð Transport Characterization in a Sandy Soil Using ERT: 1. Investigating the Validity of ERTâ€derived Transport Parameters. Vadose Zone Journal, 2009, 8, 711-722.	2.2	40
68	High resolution aquifer characterization using crosshole <scp>GPR</scp> fullâ€waveform tomography: Comparison with directâ€push and tracer test data. Water Resources Research, 2017, 53, 49-72.	4.2	39
69	Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits. Journal of Mathematical Biology, 2017, 75, 1133-1170.	1.9	38
70	Quantification and Prediction of Nighttime Evapotranspiration for Two Distinct Grassland Ecosystems. Water Resources Research, 2019, 55, 2961-2975.	4.2	38
71	Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry. Geoderma, 2018, 314, 160-174.	5.1	38
72	Stochastic Continuum Transport Equations for Field-Scale Solute Transport: Overview of Theoretical and Experimental Results. Vadose Zone Journal, 2006, 5, 184-203.	2.2	37

#	Article	IF	CITATIONS
73	Controls on dissolved organic carbon export through surface runoff from loamy agricultural soils. Geoderma, 2014, 226-227, 387-396.	5.1	37
74	Heat and water transport in soils and across the soilâ€∎tmosphere interface: 2. Numerical analysis. Water Resources Research, 2017, 53, 1080-1100.	4.2	37
75	CPlantBox, a whole-plant modelling framework for the simulation of water- and carbon-related processes. In Silico Plants, 2020, 2, .	1.9	37
76	A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures. Applied Mathematical Modelling, 2017, 52, 648-663.	4.2	36
77	Modeling the Impact of Biopores on Root Growth and Root Water Uptake. Vadose Zone Journal, 2019, 18, 1-20.	2.2	36
78	Estimating Soil Hydraulic Properties from Infrared Measurements of Soil Surface Temperatures and TDR Data. Vadose Zone Journal, 2010, 9, 910-924.	2.2	35
79	Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant and Soil, 2019, 439, 273-292.	3.7	35
80	Concentration variance and spatial covariance in second-order stationary heterogeneous conductivity fields. Water Resources Research, 2001, 37, 1893-1912.	4.2	34
81	Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures. Plant and Soil, 2014, 384, 93-112.	3.7	34
82	Parameter uncertainty in the mobile-immobile solute transport model. Journal of Hydrology, 1997, 190, 75-101.	5.4	33
83	Analyses of locally measured bromide breakthrough curves from a natural gradient tracer experiment at Krauthausen. Journal of Contaminant Hydrology, 2001, 48, 23-43.	3.3	33
84	Field study on colloid transport using fluorescent microspheres. European Journal of Soil Science, 2008, 59, 82-93.	3.9	33
85	PARSWMS: A Parallelized Model for Simulating Three-Dimensional Water Flow and Solute Transport in Variably Saturated Soils. Vadose Zone Journal, 2007, 6, 255-259.	2.2	32
86	Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using Cone Penetration Test. Journal of Contaminant Hydrology, 2008, 95, 57-75.	3.3	32
87	Simulating the mobility of meteoric 10 Be in the landscape through a coupled soil-hillslope model (Be2D). Earth and Planetary Science Letters, 2016, 439, 143-157.	4.4	32
88	A new model for root growth in soil with macropores. Plant and Soil, 2017, 415, 99-116.	3.7	32
89	Measuring and Modeling Hydraulic Lift of <i>Lolium multiflorum</i> Using Stable Water Isotopes. Vadose Zone Journal, 2018, 17, 1-15.	2.2	31
90	Surfactant enhanced solubilization of residual trichloroethene: an experimental and numerical analysis. Journal of Contaminant Hydrology, 2000, 46, 1-16.	3.3	30

#	Article	IF	CITATIONS
91	Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resources Research, 2006, 42, .	4.2	30
92	Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems. Vadose Zone Journal, 2012, 11, vzj2011.0186.	2.2	30
93	Moisture profiles of the upper soil layer during evaporation monitored by NMR. Water Resources Research, 2014, 50, 5184-5195.	4.2	30
94	Do Lab-Derived Distribution Coefficient Values of Pesticides Match Distribution Coefficient Values Determined from Column and Field-Scale Experiments? A Critical Analysis of Relevant Literature. Journal of Environmental Quality, 2011, 40, 879-898.	2.0	29
95	Virtual Soils: Assessment of the Effects of Soil Structure on the Hydraulic Behavior of Cultivated Soils. Vadose Zone Journal, 2012, 11, vzj2011.0174.	2.2	29
96	Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study. Vadose Zone Journal, 2012, 11, vzj2012.0009.	2.2	29
97	Using the long-term memory effect of pesticide and metabolite soil residues to estimate field degradation half-life and test leaching predictions. Geoderma, 2013, 207-208, 15-24.	5.1	29
98	Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant and Soil, 2014, 377, 277-293.	3.7	29
99	Noninvasive 3â€D Transport Characterization in a Sandy Soil Using ERT: 2. Transport Process Inference. Vadose Zone Journal, 2009, 8, 723-734.	2.2	28
100	Reconstruction of Three-Dimensional Aquifer Heterogeneity from Two-Dimensional Geophysical Data. Mathematical Geosciences, 2018, 50, 53-75.	2.4	28
101	Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations. Agricultural and Forest Meteorology, 2019, 269-270, 28-45.	4.8	28
102	A functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Annals of Botany, 2020, 126, 789-806.	2.9	28
103	Numerical Analysis of Passive Capillary Wick Samplers prior to Field Installation. Soil Science Society of America Journal, 2007, 71, 35-42.	2.2	26
104	Near-surface solute redistribution during evaporation. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	26
105	Linking rhizosphere processes across scales: Opinion. Plant and Soil, 2022, 478, 5-42.	3.7	25
106	Solute transport in a heterogeneous soil for boundary and initial conditions: Evaluation of first-order approximations. Water Resources Research, 1998, 34, 3255-3270.	4.2	24
107	Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations. Frontiers in Plant Science, 2015, 6, 370.	3.6	24
108	Monitoring Soil Water Content Using Time‣apse Horizontal Borehole GPR Data at the Fieldâ€Plot Scale. Vadose Zone Journal, 2019, 18, 190044.	2.2	24

#	Article	IF	CITATIONS
109	Miscible Displacement, Sorption and Desorption of Atrazine in a Brazilian Oxisol. Vadose Zone Journal, 2003, 2, 728-738.	2.2	23
110	Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: the Lagrangian approach. Journal of Contaminant Hydrology, 2002, 54, 141-171.	3.3	22
111	Three-Dimensional Modeling of the Scale- and Flow Rate-Dependency of Dispersion in a Heterogeneous Unsaturated Sandy Monolith. Vadose Zone Journal, 2006, 5, 515-528.	2.2	22
112	Withinâ€Field Variability of Bare Soil Evaporation Derived from Eddy Covariance Measurements. Vadose Zone Journal, 2010, 9, 943-954.	2.2	22
113	Parameterizing a Dynamic Architectural Model of the Root System of Spring Barley from Minirhizotron Data. Vadose Zone Journal, 2012, 11, vzj2011.0179.	2.2	22
114	Functional–structural root-system model validation using a soil MRI experiment. Journal of Experimental Botany, 2019, 70, 2797-2809.	4.8	22
115	Connecting the dots between computational tools to analyse soil–root water relations. Journal of Experimental Botany, 2019, 70, 2345-2357.	4.8	22
116	Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach. Hydrology and Earth System Sciences, 2020, 24, 1211-1225.	4.9	22
117	A grid refinement approach for a threeâ€dimensional soilâ€root water transfer model. Water Resources Research, 2009, 45, .	4.2	21
118	Identifying the Transport Pathways of Dissolved Organic Carbon in Contrasting Catchments. Vadose Zone Journal, 2014, 13, 1-14.	2.2	21
119	Soil Hydraulic Parameters and Surface Soil Moisture of a Tilled Bare Soil Plot Inversely Derived from Lâ€Band Brightness Temperatures. Vadose Zone Journal, 2014, 13, 1-18.	2.2	21
120	Isotopic composition of plant water sources. Nature, 2016, 536, E1-E3.	27.8	21
121	Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models. Plant and Soil, 2018, 425, 457-477.	3.7	21
122	Prediction of velocity statistics in three-dimensional multi-Gaussian hydraulic conductivity fields. Water Resources Research, 2006, 42, .	4.2	20
123	One-Dimensional Modeling of Transport in Soils with Depth-Dependent Dispersion, Sorption and Decay. Vadose Zone Journal, 2007, 6, 140-148.	2.2	20
124	Hydraulic non-equilibrium during infiltration induced by structural connectivity. Advances in Water Resources, 2012, 44, 101-112.	3.8	20
125	Virtual Soils: Moisture Measurements and Their Interpretation by Inverse Modeling. Vadose Zone Journal, 2013, 12, 1-12.	2.2	20
126	Reactive Transport of Iomeprol during Stream-Groundwater Interactions. Environmental Science & Technology, 2014, 48, 199-207.	10.0	20

#	Article	IF	CITATIONS
127	Combining δ13C measurements and ERT imaging: improving our understanding of competition at the crop-soil-hedge interface. Plant and Soil, 2015, 393, 1-20.	3.7	20
128	Modeling the Impact of Rhizosphere Bulk Density and Mucilage Gradients on Root Water Uptake. Frontiers in Agronomy, 2021, 3, .	3.3	20
129	Inverse Modeling of Pesticide Leaching in Lysimeters: Local versus Global and Sequential Singleâ€Objective versus Multiobjective Approaches. Vadose Zone Journal, 2009, 8, 793-804.	2.2	19
130	Investigation of Kinetic Isotopic Fractionation of Water During Bare Soil Evaporation. Water Resources Research, 2018, 54, 6909-6928.	4.2	19
131	Identification of Transport Processes in Soil Cores Using Fluorescent Tracers. Soil Science Society of America Journal, 2002, 66, 774.	2.2	19
132	Interpretation of Dye Transport in a Macroscopically Heterogeneous, Unsaturated Subsoil with a One-Dimensional Model. Vadose Zone Journal, 2006, 5, 529-538.	2.2	18
133	Multivariate conditional stochastic simulation of soil heterotrophic respiration at plot scale. Geoderma, 2010, 160, 74-82.	5.1	18
134	Effect of pesticide fate parameters and their uncertainty on the selection of †worstâ€case' scenarios of pesticide leaching to groundwater. Pest Management Science, 2011, 67, 294-306.	3.4	18
135	Upward Transport in a Threeâ€Ðimensional Heterogeneous Laboratory Soil under Evaporation Conditions. Vadose Zone Journal, 2012, 11, vzj2011.0066.	2.2	18
136	Effects of Near Surface Soil Moisture Profiles During Evaporation on Farâ€Field Groundâ€Penetrating Radar Data: A Numerical Study. Vadose Zone Journal, 2013, 12, 1-11.	2.2	18
137	Solute Transport in Heterogeneous Soil with Timeâ€Đependent Boundary Conditions. Vadose Zone Journal, 2016, 15, 1-17.	2.2	18
138	Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake. Frontiers in Plant Science, 2020, 11, 316.	3.6	18
139	Deriving Transport Parameters from Transient Flow Leaching Experiments by Approximate Steadyâ€State Flow Convection–Dispersion Models. Soil Science Society of America Journal, 2000, 64, 1317-1327.	2.2	17
140	Imaging Fluorescent Dye Concentrations on Soil Surfaces. Soil Science Society of America Journal, 2002, 66, 760-773.	2.2	17
141	Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma, 2018, 314, 37-46.	5.1	17
142	Impacts of forest conversion and agriculture practices on water pathways in Southern Brazil. Hydrological Processes, 2018, 32, 2304-2317.	2.6	17
143	Evaluation of Model Concepts to Describe Water Transport in Shallow Subsurface Soil and Across the Soil–Air Interface. Transport in Porous Media, 2019, 128, 945-976.	2.6	17
144	Soil hydraulic properties estimation from oneâ€dimensional infiltration experiments using characteristic time concept. Vadose Zone Journal, 2020, 19, e20068.	2.2	17

#	Article	IF	CITATIONS
145	On the impact of increasing drought on the relationship between soil water content and evapotranspiration of a grassland. Vadose Zone Journal, 2020, 19, e20029.	2.2	17
146	Pesticide fate at regional scale: Development of an integrated model approach and application. Physics and Chemistry of the Earth, 2005, 30, 542-549.	2.9	16
147	Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties. Hydrology and Earth System Sciences, 2017, 21, 6519-6540.	4.9	16
148	Simulating transpiration and leaf water relations in response to heterogeneous soil moisture and different stomatal control mechanisms. Plant and Soil, 2015, 394, 109-126.	3.7	15
149	The Root Zone: Soil Physics and Beyond. Vadose Zone Journal, 2018, 17, 1-6.	2.2	15
150	Comparison of root water uptake models in simulating CO ₂ and H ₂ O fluxes and growth of wheat. Hydrology and Earth System Sciences, 2020, 24, 4943-4969.	4.9	15
151	Combined Impact of Soil Heterogeneity and Vegetation Type on the Annual Water Balance at the Field Scale. Vadose Zone Journal, 2013, 12, 1-17.	2.2	14
152	From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models. Hydrology and Earth System Sciences, 2021, 25, 4835-4860.	4.9	14
153	Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought. Plant and Soil, 2022, 478, 119-141.	3.7	14
154	Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline. Plant Phenomics, 2022, 2022, .	5.9	14
155	Geophysical Methods for Field-Scale Imaging of Root Zone Properties and Processes. SSSA Special Publication Series, 0, , 247-282.	0.2	13
156	Quantitative mapping of solute accumulation in a soilâ€root system by magnetic resonance imaging. Water Resources Research, 2017, 53, 7469-7480.	4.2	13
157	Exploring Osmotic Stress and Differences between Soil–Root Interface and Bulk Salinities. Vadose Zone Journal, 2018, 17, 1-13.	2.2	13
158	On preconditioning for a parallel solution of the Richards equation. Computers and Geosciences, 2008, 34, 1958-1963.	4.2	12
159	Leaching surfaces to characterize transport in a heterogeneous aquifer: Comparison between flux concentrations, resident concentrations, and flux concentrations estimated from temporal moment analysis. Water Resources Research, 2008, 44, .	4.2	12
160	European scenarios for exposure of soil organisms to pesticides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 703-716.	1.5	12
161	Estimation of the near surface soil water content during evaporation using airâ€launched groundâ€penetrating radar. Near Surface Geophysics, 2014, 12, 623-634.	1.2	12
162	The effect of the top soil layer on moisture and evaporation dynamics. Vadose Zone Journal, 2020, 19, e20049.	2.2	12

#	Article	IF	CITATIONS
163	Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground penetrating radar data. Near Surface Geophysics, 2020, 18, 275-294.	1.2	12
164	Investigating Atrazine Concentrations in the Zwischenscholle Aquifer Using MODFLOW with the HYDRUS-1D Package and MT3DMS. Water (Switzerland), 2020, 12, 1019.	2.7	12
165	Root architecture development in stony soils. Vadose Zone Journal, 2021, 20, e20133.	2.2	12
166	Fate of Two Herbicides in Zeroâ€Tension Lysimeters and in Field Soil. Journal of Environmental Quality, 2010, 39, 1451-1466.	2.0	11
167	Soil Hydraulic Parameters of Bare Soil Plots with Different Soil Structure Inversely Derived from Lâ€Band Brightness Temperatures. Vadose Zone Journal, 2015, 14, 1-23.	2.2	11
168	Simulating rhizodeposition patterns around growing and exuding root systems. In Silico Plants, 2021, 3, .	1.9	11
169	SOLUTE TRANSPORT PROCESSES. , 2006, , 117-159.		11
170	Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. Hydrogeology Journal, 2013, 21, 799-812.	2.1	10
171	Tracing root-felt sodium concentrations under different transpiration rates and salinity levels. Plant and Soil, 2020, 447, 55-71.	3.7	10
172	Prediction of soil evaporation measured with weighable lysimeters using the FAO Penman–Monteith method in combination with Richards' equation. Vadose Zone Journal, 2021, 20, e20102.	2.2	10
173	Toward highâ€resolution agronomic soil information and management zones delineated by groundâ€based electromagnetic induction and aerial drone data. Vadose Zone Journal, 2021, 20, e20099.	2.2	10
174	Detection of Tracer Plumes Using Fullâ€Waveform Inversion of Timeâ€Lapse Ground Penetrating Radar Data: A Numerical Study in a Highâ€Resolution Aquifer Model. Water Resources Research, 2022, 58, .	4.2	10
175	Comparison of three stream tube models predicting field-scale solute transport. Hydrology and Earth System Sciences, 1997, 1, 873-893.	4.9	9
176	Comment on "Field observations of soil moisture variability across scales―by James S. Famiglietti et al Water Resources Research, 2008, 44, .	4.2	9
177	Can We Use Electrical Resistivity Tomography to Measure Root Zone Dynamics in Fields with Multiple Crops?. Procedia Environmental Sciences, 2013, 19, 403-410.	1.4	9
178	Parameter sensitivity analysis of a root system architecture model based on virtual field sampling. Plant and Soil, 2019, 438, 101-126.	3.7	9
179	Tropical Peatland Hydrology Simulated With a Clobal Land Surface Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	9
180	Comparison between field measurements and numerical simulation of steady-state solute transport in a heterogeneous soil profile. Hydrology and Earth System Sciences, 1997, 1, 853-871.	4.9	8

#	Article	IF	CITATIONS
181	Uncertainty in Pesticide Monitoring Using Suction Cups: Evidence from Numerical Simulations. Vadose Zone Journal, 2011, 10, 1287-1298.	2.2	8
182	Numerical calculation of soil water potential in an irrigated â€~conference' pear orchard. Agricultural Water Management, 2015, 148, 113-122.	5.6	8
183	Root System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions. Frontiers in Plant Science, 2022, 13, 798741.	3.6	8
184	Numerical Modeling of Large Scale Transport of Contminant Solutes Using the Global Random Walk Algorithm. Monte Carlo Methods and Applications, 2004, 10, 153-177.	0.8	7
185	Research at the Agrosphere Institute: From the Process Scale to the Catchment Scale. Vadose Zone Journal, 2009, 8, 664-669.	2.2	7
186	Improving uncertainty analysis in kinetic evaluations using iteratively reweighted least squares. Environmental Toxicology and Chemistry, 2011, 30, 2363-2371.	4.3	7
187	Visualization of transport pathways for organic compounds in undisturbed soil monoliths. Geoderma, 2013, 195-196, 70-78.	5.1	7
188	A new model for optimizing the water acquisition of root hydraulic architectures over full crop cycles. , 2016, , .		7
189	Magnetic Resonance Monitoring and Numerical Modeling of Soil Moisture during Evaporation. Vadose Zone Journal, 2018, 17, 1-15.	2.2	7
190	Quantitative imaging of sodium concentrations in soil-root systems using magnetic resonance imaging (MRI). Plant and Soil, 2020, 454, 171-185.	3.7	7
191	Comment on "Root Water Extraction and Limiting Soil Hydraulic Conditions Estimated by Numerical Simulation― Vadose Zone Journal, 2007, 6, 524-526.	2.2	6
192	Fluorescence macrophotography as a tool to visualise and quantify spatial distribution of deposited colloid tracers in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 118-125.	4.7	6
193	Solute Spreading under Transient Conditions in a Field Soil. Vadose Zone Journal, 2009, 8, 690-702.	2.2	6
194	Transition of stage I to stage II evaporation regime in the topmost soil: High-resolution NMR imaging, profiling and numerical simulation. Microporous and Mesoporous Materials, 2015, 205, 3-6.	4.4	6
195	Scale-dependent parameterization of groundwater–surface water interactions in a regional hydrogeological model. Journal of Hydrology, 2019, 576, 494-507.	5.4	6
196	Quantification of water stress induced within-field variability of carbon dioxide fluxes in a sugar beet stand. Agricultural and Forest Meteorology, 2021, 297, 108242.	4.8	6
197	Mechanistic modeling of pesticide uptake with a 3D plant architecture model. Environmental Science and Pollution Research, 2021, 28, 55678-55689.	5.3	6
198	Imaging Fluorescent Dye Concentrations on Soil Surfaces. Soil Science Society of America Journal, 2002, 66, 760.	2.2	6

#	Article	IF	CITATIONS
199	Parasite inversion for determining the coefficients and timeâ€validity of Philip's twoâ€ŧerm infiltration equation. Vadose Zone Journal, 2022, 21, .	2.2	6
200	Dynamics of Fluid Interfaces and Flow and Transport across Material Interfaces in Porous Media-Modeling and Observations. Vadose Zone Journal, 2012, 11, vzj2012.0105.	2.2	5
201	Bayesian inference of root architectural model parameters from synthetic field data. Plant and Soil, 2021, 467, 67-89.	3.7	5
202	Investigating Preferential Flow Processes in a Forest Soil Using Time Domain Reflectometry and Electrical Resistivity Tomography. Vadose Zone Journal, 2010, 9, 350-361.	2.2	5
203	Solute transport in aquifers with evolving scale heterogeneity. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2015, 23, 167-186.	0.3	5
204	On Infiltration and Infiltration Characteristic Times. Water Resources Research, 2022, 58, .	4.2	5
205	Design and Testing of a Drop Counter for Use in Vadose Zone Water Samplers. Vadose Zone Journal, 2008, 7, 434-438.	2.2	4
206	Radio brightness validation on different spatial scales during the SMOS validation campaign 2010 in the Rur catchment, Germany. , 2011, , .		4
207	Have land use and land cover change affected soil thickness and weathering degree in a subtropical region in Southern Brazil? Insights from applied mid-infrared spectroscopy. Catena, 2021, 207, 105698.	5.0	4
208	Miscible Displacement, Sorption and Desorption of Atrazine in a Brazilian Oxisol. Vadose Zone Journal, 2003, 2, 728-738.	2.2	4
209	Same soil, different climate: Crop model intercomparison on translocated lysimeters. Vadose Zone Journal, 2022, 21, .	2.2	4
210	Quantitative Imaging of 3D Solute Transport Using 2D Time‣apse ERT: A Synthetic Feasibility Study. , 2004, , .		3
211	New improved algorithm for sky calibration of L-band radiometers JÜLBARA and ELBARA II. , 2012, , .		3
212	Analysis of Solute Redistribution in Heterogeneous Soil. Quantitative Geology and Geostatistics, 1997, , 271-282.	0.1	3
213	Comparison of smoothness-constrained and geostatistically based cross-borehole electrical resistivity tomography for characterization of solute tracer plumes. Water Science and Engineering, 2016, 9, 274-286.	3.2	2
214	Time-lapse ground-penetrating radar full-waveform inversion to detect tracer plumes: A numerical study. , 2018, , .		2
215	Miscible Displacement, Sorption and Desorption of Atrazine in a Brazilian Oxisol. Vadose Zone Journal, 2003, 2, 728.	2.2	2
216	Reply to "Comment on â€~Comparison of Three Methods to Calibrate TDR for Monitoring Solute Movement in Undisturbed Soil'― Soil Science Society of America Journal, 1998, 62, 490.	2.2	1

Jan Vanderborght

#	Article	IF	CITATIONS
217	Hydrogeophysical characterization of subsurface solute transport at the Krauthausen test site: experiments and numerical modelling. , 2005, , 221-237.		1
218	Estimation of radiative transfer parameters for soil moisture retrieval from SMOS brightness temperatures - a synthetic 1D experiment with the Particle Filter. , 2011, , .		1
219	WATER STRESS DETECTION IN A 'CONFERENCE' PEAR ORCHARD IN A TEMPERATE CLIMATE USING SAP FLOW MONITORING. Acta Horticulturae, 2013, , 425-432.	0.2	1
220	Presentation of CPlantBox: a whole functional-structural plant model (root and shoot) coupled with a mechanistic resolution of carbon and water flows. , 2018, , .		1
221	How to Define the Appropriate Spatial Resolution of Root Segments When Solving in Root System Hydraulic. Methods in Molecular Biology, 2022, 2395, 285-291.	0.9	1
222	Estimating Dose Rates from Activated Groundwater at Accelerator Sites. Nuclear Technology, 2009, 168, 924-930.	1.2	0
223	Closed loop brightness temperature data inversion for the retrieval of soil hydraulic properties. , 2011, , .		Ο
224	Time-lapse horizontal borehole GPR measurements to investigate spatial and temporal soil-water content changes. , 2018, , .		0
225	Response to "Comments on â€~A Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils'― Vadose Zone Journal, 2006, 5, 128-128.	2.2	Ο
226	Investigating Soil–Root Interactions with the Numerical Model R-SWMS. Methods in Molecular Biology, 2022, 2395, 259-283.	0.9	0