
Jan KozÅ,owski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11399632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of thermal and oxygen conditions during development on cell size in the common rough woodlice Porcellio scaber. Ecology and Evolution, 2020, 10, 9552-9566.	1.9	9
2	Coevolution of body size and metabolic rate in vertebrates: a lifeâ€history perspective. Biological Reviews, 2020, 95, 1393-1417.	10.4	73
3	Thermal and oxygen conditions during development cause common rough woodlice (Porcellio) Tj ETQq1 1 0.784	4314 rgBT 2.5	Öyerlock 1
4	Williams' Prediction Will Often Be Observed in Nature. Trends in Ecology and Evolution, 2020, 35, 302-303.	8.7	4
5	Scaling of organ masses in mammals and birds: phylogenetic signal and implications for metabolic rate scaling. ZooKeys, 2020, 982, 149-159.	1.1	4
6	Probing of mortality rate by staying alive: The growthâ€reproduction tradeâ€off in a spatially heterogeneous environment. Functional Ecology, 2019, 33, 2327-2337.	3.6	10
7	Vanishing benefits - The loss of actinobacterial symbionts at elevated temperatures. Journal of Thermal Biology, 2019, 82, 222-228.	2.5	16
8	Concerted evolution of body mass and cell size: similar patterns among species of birds (Galliformes) and mammals (Rodentia). Biology Open, 2018, 7, .	1.2	23
9	Effects of fat and exoskeletal mass on the mass scaling of metabolism in Carabidae beetles. Journal of Insect Physiology, 2018, 106, 232-238.	2.0	7
10	Extrinsic Mortality Can Shape Life-History Traits, Including Senescence. Evolutionary Biology, 2018, 45, 395-404.	1.1	25
11	An evolutionary solution of terrestrial isopods to cope with low atmospheric oxygen levels. Journal of Experimental Biology, 2017, 220, 1563-1567.	1.7	10
12	Mass scaling of metabolic rates in carabid beetles (Carabidae) – the importance of phylogeny, regression models and gas exchange patterns. Journal of Experimental Biology, 2017, 220, 3363-3371.	1.7	8
13	Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles. Journal of Thermal Biology, 2017, 68, 89-95.	2.5	10
14	Density-dependence interacts with extrinsic mortality in shaping life histories. PLoS ONE, 2017, 12, e0186661.	2.5	17
15	Thermal plasticity of body size and cell size in snails from two subspecies of <i>Cornu aspersum</i> . Journal of Molluscan Studies, 2016, 82, 235-243.	1.2	21
16	The temperature–size rule in a rotifer is determined by the mother and at the egg stage. Evolutionary Ecology, 2015, 29, 525-536.	1.2	17
17	Growth rate and survival of terrestrial isopods is related to possibility to acquire symbionts. European Journal of Soil Biology, 2015, 69, 52-56.	3.2	17
18	Brood space limitation of reproduction may explain growth after maturity in differently sized Daphnia species. Journal of Plankton Research, 2015, 37, 417-428.	1.8	13

Jan KozÅ,owski

#	Article	IF	CITATIONS
19	Seasonality in Offspring Value and Trade-Offs with Growth Explain Capital Breeding. American Naturalist, 2015, 186, E111-E125.	2.1	34
20	Unraveling the non-senescence phenomenon in Hydra. Journal of Theoretical Biology, 2015, 382, 137-149.	1.7	26
21	The Temperature–Size Rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature and oxygen combinations. Journal of Thermal Biology, 2015, 54, 78-85.	2.5	54
22	Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?. ZooKeys, 2015, 515, 67-79.	1.1	8
23	Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperatureâ€ S ize Rule. Ecology and Evolution, 2014, 4, 4678-4689.	1.9	27
24	Optimal allocation patterns and optimal seed mass of a perennial plant. Journal of Theoretical Biology, 2014, 354, 12-24.	1.7	10
25	Ontogeny of Metabolic Rate and Red Blood Cell Size in Eyelid Geckos: Species Follow Different Paths. PLoS ONE, 2013, 8, e64715.	2.5	43
26	Mutation Accumulation May Be a Minor Force in Shaping Life History Traits. PLoS ONE, 2012, 7, e34146.	2.5	20
27	Mutation Accumulation May Only Be a Minor Force in Shaping Life-History Traits, Even when Reproduction Is Sexual. PLoS ONE, 2012, 7, e48302.	2.5	4
28	Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Functional Ecology, 2011, 25, 1072-1078.	3.6	75
29	How to Time Growth and Reproduction during the Vegetative Season: An Evolutionary Choice for Indeterminate Growers in Seasonal Environments. American Naturalist, 2010, 175, 551-563.	2.1	34
30	The considerable adult size variability in wood feeders is optimal. Ecological Entomology, 2010, 35, 16-24.	2.2	15
31	Cell Size but Not Genome Size Affects Scaling of Metabolic Rate in Eyelid Geckos. American Naturalist, 2009, 174, E100-E105.	2.1	78
32	How can we model selectively neutral density dependence in evolutionary games. Theoretical Population Biology, 2008, 73, 250-256.	1.1	11
33	Scaling of metabolism in <i>Helix aspersa</i> snails: changes through ontogeny and response to selection for increased size. Journal of Experimental Biology, 2008, 211, 391-400.	1.7	67
34	Cross-habitat differences in crush resistance and growth pattern of zebra mussels (Dreissena) Tj ETQq0 0 0 rgB1 165, 191-208.	/Overloc 1.1	k 10 Tf 50 147 28
35	Why are species' body size distributions usually skewed to the right?. Functional Ecology, 2002, 16, 419-432.	3.6	135
36	Do Bertalanffy's growth curves result from optimal resource allocation?. Ecology Letters, 1998, 1, 5-7.	6.4	61

Jan KozÅ,owski

#	Article	IF	CITATIONS
37	Density-dependent regulation of population number and life-history evolution: Optimization of age at maturity in a simple allocation model for annuals and biennials. Ecological Modelling, 1994, 73, 81-96.	2.5	12
38	Measuring fitness in life, history studies. Trends in Ecology and Evolution, 1993, 8, 84-85.	8.7	101
39	Pleiotropic parasites and life history theory. Trends in Ecology and Evolution, 1992, 7, 241.	8.7	0
40	Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends in Ecology and Evolution, 1992, 7, 15-19.	8.7	484
41	Sexual Size Dimorphism: A Life History Perspective. Oikos, 1989, 54, 253.	2.7	61
42	Optimal individual growth and reproduction in perennial species with indeterminate growth. Evolutionary Ecology, 1987, 1, 214-230.	1.2	141
43	Optimal age and size at maturity in annuals and perennials with determinate growth. Evolutionary Ecology, 1987, 1, 231-244.	1.2	136
44	Optimal allocation of energy to growth and reproduction. Theoretical Population Biology, 1986, 29, 16-37.	1.1	160
45	Evolution of body size: an optimization model. Mathematical Biosciences, 1983, 64, 127-143.	1.9	45