
Cory Berkland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11398804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanotechnology in vaccine delivery. Advanced Drug Delivery Reviews, 2008, 60, 915-928.	13.7	479
2	Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 2002, 82, 137-147.	9.9	348
3	Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. Journal of Controlled Release, 2001, 73, 59-74.	9.9	314
4	PLG microsphere size controls drug release rate through several competing factors. Pharmaceutical Research, 2003, 20, 1055-1062.	3.5	182
5	PLGA Nanoparticleâ^'Peptide Conjugate Effectively Targets Intercellular Cell-Adhesion Molecule-1. Bioconjugate Chemistry, 2008, 19, 145-152.	3.6	176
6	Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Journal of Controlled Release, 2004, 94, 129-141.	9.9	170
7	Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 341-366.	4.8	170
8	Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials, 2010, 31, 4980-4986.	11.4	159
9	Modeling small-molecule release from PLG microspheres: effects of polymer degradation and nonuniform drug distribution. Journal of Controlled Release, 2005, 103, 149-158.	9.9	144
10	PLGAâ€chitosan/PLGAâ€alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2011, 96A, 520-527.	4.0	126
11	Uniform double-walled polymer microspheres of controllable shell thickness. Journal of Controlled Release, 2004, 96, 101-111.	9.9	120
12	Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Advanced Drug Delivery Reviews, 2017, 120, 50-70.	13.7	119
13	NanoCipro encapsulation in monodisperse large porous PLGA microparticles. Journal of Controlled Release, 2007, 121, 100-109.	9.9	115
14	Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(,-lactide-co-glycolide). Biomaterials, 2004, 25, 5649-5658.	11.4	108
15	Cell Adhesion Molecules for Targeted Drug Delivery. Journal of Pharmaceutical Sciences, 2006, 95, 1856-1872.	3.3	108
16	Microsphere-Based Seamless Scaffolds Containing Macroscopic Gradients of Encapsulated Factors for Tissue Engineering. Tissue Engineering - Part C: Methods, 2008, 14, 299-309.	2.1	106
17	Polyelectrolyte Complexes Stabilize and Controllably Release Vascular Endothelial Growth Factor. Biomacromolecules, 2007, 8, 1607-1614.	5.4	100
18	Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 2016, 7, 49349-49367.	1.8	95

#	Article	IF	CITATIONS
19	Microsphere-based scaffolds for cartilage tissue engineering: Using subcritical CO2 as a sintering agent. Acta Biomaterialia, 2010, 6, 137-143.	8.3	85
20	Poly(<i>N</i> -vinylformamide) Nanogels Capable of pH-Sensitive Protein Release. Macromolecules, 2008, 41, 6546-6554.	4.8	83
21	Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1. Journal of Pharmaceutical Sciences, 2011, 100, 1045-1056.	3.3	78
22	Delayed HPAM Gelation via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles. Macromolecules, 2008, 41, 4398-4404.	4.8	76
23	Budesonide Nanoparticle Agglomerates as Dry Powder Aerosols With Rapid Dissolution. Journal of Pharmaceutical Sciences, 2009, 98, 2731-2746.	3.3	76
24	Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration. Pharmaceutical Research, 2009, 26, 1752-1763.	3.5	73
25	Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 2586-2593.	3.1	69
26	Intratracheal Administration of a Nanoparticle-Based Therapy with the Angiotensin II Type 2 Receptor Gene Attenuates Lung Cancer Growth. Cancer Research, 2012, 72, 2057-2067.	0.9	68
27	Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity. Advanced Drug Delivery Reviews, 2016, 98, 86-98.	13.7	66
28	Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. International Journal of Pharmaceutics, 2009, 369, 136-143.	5.2	65
29	Vaccine-like Controlled-Release Delivery of an Immunomodulating Peptide To Treat Experimental Autoimmune Encephalomyelitis. Molecular Pharmaceutics, 2012, 9, 979-985.	4.6	65
30	Acid-Labile Polyvinylamine Micro- and Nanogel Capsules. Macromolecules, 2007, 40, 4635-4643.	4.8	60
31	Reduction of diffusion barriers in isolated rat islets improves survival, but not insulin secretion or transplantation outcome. Organogenesis, 2010, 6, 115-124.	1.2	58
32	Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biology and Therapy, 2010, 9, 277-285.	3.4	58
33	Monodisperse Liquid-filled Biodegradable Microcapsules. Pharmaceutical Research, 2007, 24, 1007-1013.	3.5	57
34	Macromolecule Release from Monodisperse PLG Microspheres: Control of Release Rates and Investigation of Release Mechanism. Journal of Pharmaceutical Sciences, 2007, 96, 1176-1191.	3.3	56
35	Biodegradable Nanoparticle Flocculates for Dry Powder Aerosol Formulation. Langmuir, 2007, 23, 10897-10901.	3.5	53
36	Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery. Langmuir, 2008, 24, 13614-13620.	3.5	53

#	Article	IF	CITATIONS
37	Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. International Journal of Pharmaceutics, 2012, 427, 134-142.	5.2	50
38	Formulation and preclinical evaluation of a toll-like receptor 7/8 agonist as an anti-tumoral immunomodulator. Journal of Controlled Release, 2019, 306, 165-176.	9.9	48
39	Three-month, zero-order piroxicam release from monodispersed double-walled microspheres of controlled shell thickness. Journal of Biomedical Materials Research Part B, 2004, 70A, 576-584.	3.1	47
40	Adhesion of pancreatic beta cells to biopolymer films. Biopolymers, 2009, 91, 676-685.	2.4	44
41	Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Nanomedicine, 2012, 7, 1297-1309.	3.3	39
42	Threeâ€dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. Journal of Biomedical Materials Research - Part A, 2010, 94A, 870-876.	4.0	38
43	Calcium Condensed LABL-TAT Complexes Effectively Target Gene Delivery to ICAM-1 Expressing Cells. Molecular Pharmaceutics, 2011, 8, 788-798.	4.6	38
44	Multivalent Nanomaterials: Learning from Vaccines and Progressing to Antigen-Specific Immunotherapies. Journal of Pharmaceutical Sciences, 2015, 104, 346-361.	3.3	37
45	Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols. European Journal of Pharmaceutical Sciences, 2011, 44, 522-533.	4.0	35
46	Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14008.	4.1	35
47	"Soft―Calcium Crosslinks Enable Highly Efficient Gene Transfection Using TAT Peptide. Pharmaceutical Research, 2009, 26, 2619-2629.	3.5	34
48	Calcium Condensation of DNA Complexed with Cell-Penetrating Peptides Offers Efficient, Noncytotoxic Gene Delivery. Journal of Pharmaceutical Sciences, 2011, 100, 1637-1642.	3.3	34
49	Effects of divalent cations, seawater, and formation brine on positively charged polyethylenimine/dextran sulfate/chromium(III) polyelectrolyte complexes and partially hydrolyzed polyacrylamide/chromium(III) gelation. Journal of Applied Polymer Science, 2010, 115, 1008-1014.	2.6	33
50	Iodinated NanoClusters as an Inhaled Computed Tomography Contrast Agent for Lung Visualization. Molecular Pharmaceutics, 2010, 7, 1274-1282.	4.6	32
51	Poly(vinylamine) microgels: pH-responsive particles with high primary amine contents. Soft Matter, 2013, 9, 3920.	2.7	31
52	Soluble antigen arrays disarm antigen-specific B cells to promote lasting immune tolerance in experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2018, 93, 76-88.	6.5	31
53	Single-step grafting of aminooxy-peptides to hyaluronan: A simple approach to multifunctional therapeutics for experimental autoimmune encephalomyelitis. Journal of Controlled Release, 2013, 168, 334-340.	9.9	30
54	The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells. Breast Cancer Research and Treatment, 2015, 150, 309-320.	2.5	30

#	Article	IF	CITATIONS
55	Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation. Molecular Pharmaceutics, 2016, 13, 1904-1914.	4.6	30
56	Controlled release of Repifermin® from polyelectrolyte complexes stimulates endothelial cell proliferation. Journal of Pharmaceutical Sciences, 2009, 98, 268-280.	3.3	28
57	Dry powdered aerosols of diatrizoic acid nanoparticle agglomerates as a lung contrast agent. International Journal of Pharmaceutics, 2010, 391, 305-312.	5.2	28
58	Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells. Journal of Pharmaceutical Sciences, 2010, 99, 2413-2422.	3.3	28
59	Agglomerates of Ciprofloxacin Nanoparticles Yield Fine Dry Powder Aerosols. Journal of Pharmaceutical Innovation, 2010, 5, 79-87.	2.4	28
60	Noncovalent PEGylation by Polyanion Complexation as a Means To Stabilize Keratinocyte Growth Factor-2 (KGF-2). Biomacromolecules, 2011, 12, 3880-3894.	5.4	26
61	Structure, Size, and Solubility of Antigen Arrays Determines Efficacy in Experimental Autoimmune Encephalomyelitis. AAPS Journal, 2014, 16, 1185-1193.	4.4	26
62	Co-Delivery of Autoantigen and B7 Pathway Modulators Suppresses Experimental Autoimmune Encephalomyelitis. AAPS Journal, 2014, 16, 1204-1213.	4.4	26
63	Hyaluronic Acid Nanoparticles Titrate the Viscoelastic Properties of Viscosupplements. Langmuir, 2013, 29, 5123-5131.	3.5	25
64	CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments. Oncogene, 2020, 39, 2275-2289.	5.9	24
65	Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 30-40.	3.3	23
66	Poly(<scp>d,l</scp> -lactide-co-glycolide) Nanoparticle Agglomerates as Carriers in Dry Powder Aerosol Formulation of Proteins. Langmuir, 2008, 24, 9775-9783.	3.5	22
67	Nanoparticles Targeting Dendritic Cell Surface Molecules Effectively Block T Cell Conjugation and Shift Response. ACS Nano, 2011, 5, 1693-1702.	14.6	22
68	Antigen-Specific Binding of Multivalent Soluble Antigen Arrays Induces Receptor Clustering and Impedes B Cell Receptor Mediated Signaling. Biomacromolecules, 2016, 17, 710-722.	5.4	22
69	Multivalent Soluble Antigen Arrays Exhibit High Avidity Binding and Modulation of B Cell Receptor-Mediated Signaling to Drive Efficacy against Experimental Autoimmune Encephalomyelitis. Biomacromolecules, 2017, 18, 1893-1907.	5.4	22
70	Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Therapeutic Delivery, 2011, 2, 873-889.	2.2	20
71	Design of a Cytocompatible Hydrogel Coating to Modulate Properties of Ceramic-Based Scaffolds for Bone Repair. Cellular and Molecular Bioengineering, 2018, 11, 211-217.	2.1	20
72	In vitro degradation of polyanhydride/polyester core-shell double-wall microspheres. International Journal of Pharmaceutics, 2005, 301, 294-303.	5.2	18

#	Article	IF	CITATIONS
73	LFA-1 on Leukemic Cells as a Target for Therapy or Drug Delivery. Current Pharmaceutical Design, 2010, 16, 2321-2330.	1.9	18
74	Pulmonary Administration of Soluble Antigen Arrays Is Superior toÂAntigen in Treatment of Experimental Autoimmune Encephalomyelitis. Journal of Pharmaceutical Sciences, 2017, 106, 3293-3302.	3.3	18
75	Routes of Administration and Dose Optimization of Soluble Antigen Arrays in Mice with Experimental Autoimmune Encephalomyelitis. Journal of Pharmaceutical Sciences, 2015, 104, 714-721.	3.3	17
76	Development of Budesonide Nanocluster Dry Powder Aerosols: Formulation and Stability. Journal of Pharmaceutical Sciences, 2012, 101, 3445-3455.	3.3	16
77	Hyaluronic acid colloidal gels as selfâ€assembling elastic biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 612-618.	3.4	16
78	Hyaluronic Acid Graft Polymers Displaying Peptide Antigen Modulate Dendritic Cell Response in Vitro. Molecular Pharmaceutics, 2014, 11, 367-373.	4.6	16
79	Pulmonary Delivery of Vancomycin Dry Powder Aerosol to Intubated Rabbits. Molecular Pharmaceutics, 2015, 12, 2665-2674.	4.6	16
80	Development and Characterization of FLT3-Specific Curcumin-Loaded Polymeric Micelles as a Drug Delivery System for Treating FLT3-Overexpressing Leukemic Cells. Journal of Pharmaceutical Sciences, 2016, 105, 3645-3657.	3.3	15
81	Role of ALDH1A1 and HTRA2 expression to CCL2/CCR2 mediated breast cancer cell growth and invasion. Biology Open, 2019, 8, .	1.2	15
82	Fluorinated Copolymer Nanoparticles for Multimodal Imaging Applications. Macromolecular Rapid Communications, 2010, 31, 87-92.	3.9	14
83	cIBR Effectively Targets Nanoparticles to LFA-1 on Acute Lymphoblastic T Cells. Molecular Pharmaceutics, 2010, 7, 146-155.	4.6	14
84	NanoCluster budesonide formulations enable efficient drug delivery driven by mechanical ventilation. International Journal of Pharmaceutics, 2014, 462, 19-28.	5.2	14
85	NanoCluster Itraconazole Formulations Provide a Potential Engineered Drug Particle Approach to Generate Effective Dry Powder Aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 341-352.	1.4	14
86	Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells. Molecular Pharmaceutics, 2019, 16, 1563-1572.	4.6	14
87	Co-delivery of autoantigen and dexamethasone in incomplete Freund's adjuvant ameliorates experimental autoimmune encephalomyelitis. Journal of Controlled Release, 2017, 266, 156-165.	9.9	13
88	Molecular Dynamics of Multivalent Soluble Antigen Arrays Support a Two-Signal Co-delivery Mechanism in the Treatment of Experimental Autoimmune Encephalomyelitis. Molecular Pharmaceutics, 2016, 13, 330-343.	4.6	13
89	Nanocluster Budesonide Formulations Enhance Drug Delivery through Endotracheal Tubes. Journal of Pharmaceutical Sciences, 2012, 101, 1063-1072.	3.3	12
90	NanoClusters Surface Area Allows Nanoparticle Dissolution with Microparticle Properties. Journal of Pharmaceutical Sciences, 2014, 103, 1787-1798.	3.3	12

#	Article	IF	CITATIONS
91	Production and characterization of polymer microspheres containing trace explosives using precision particle fabrication technology. Journal of Microencapsulation, 2010, 27, 426-435.	2.8	11
92	Development of Budesonide Nanocluster Dry Powder Aerosols: Processing. Journal of Pharmaceutical Sciences, 2012, 101, 3425-3433.	3.3	11
93	Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes. Diabetes, 2021, 70, 1334-1346.	0.6	11
94	Development of Budesonide Nanocluster Dry Powder Aerosols: Preformulation. Journal of Pharmaceutical Sciences, 2012, 101, 3434-3444.	3.3	10
95	Controlled release of poly(vinyl sulfonate) scale inhibitor to extend reservoir treatment lifetime. Journal of Applied Polymer Science, 2019, 136, 47225.	2.6	10
96	Formulation and Characterization of Nanocluster Ceftazidime for the Treatment of Acute Pulmonary Melioidosis. Journal of Pharmaceutical Sciences, 2016, 105, 3399-3408.	3.3	9
97	Soluble Antigen Arrays Displaying Mimotopes Direct the Response of Diabetogenic T Cells. ACS Chemical Biology, 2019, 14, 1436-1448.	3.4	9
98	Chemically modifiable fluorinated copolymer nanoparticles for ¹⁹ Fâ€MRI contrast enhancement. Journal of Applied Polymer Science, 2012, 126, 1218-1227.	2.6	8
99	DNA complexed with TAT peptide and condensed using calcium possesses unique structural features compared to PEI polyplexes. International Journal of Pharmaceutics, 2014, 465, 11-17.	5.2	8
100	Synthesis and characterization of poly(<i>N</i> â€vinyl formamide) hydrogels—A potential alternative to polyacrylamide hydrogels. Journal of Polymer Science Part A, 2013, 51, 435-445.	2.3	7
101	Application of Polyelectrolyte Complex Nanoparticles to Increase the Lifetime of Poly Vinyl Sulfonate Scale Inhibitor. , 2018, , .		7
102	Acute B-Cell Inhibition by Soluble Antigen Arrays Is Valency-Dependent and Predicts Immunomodulation in Splenocytes. Biomacromolecules, 2019, 20, 2115-2122.	5.4	7
103	Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response. Molecular Pharmaceutics, 2017, 14, 66-80.	4.6	6
104	Precision Polymer Microparticles for Controlled-Release Drug Delivery. ACS Symposium Series, 2004, , 197-213.	0.5	5
105	Low charge polyvinylamine nanogels offer sustained, Iowâ€level gene expression. Journal of Applied Polymer Science, 2010, 118, 1921-1932.	2.6	5
106	Particle Engineering Technologies for Pulmonary Drug Delivery. , 2011, , 283-312.		5
107	Next Steps for Pharmaceutical Nanotechnology. Journal of Pharmaceutical Innovation, 2010, 5, 70-71.	2.4	1
108	Research Spotlight: Therapeutic Particles and Biomaterials Technology Laboratory at The University of Kansas. Therapeutic Delivery, 2010, 1, 29-35.	2.2	0

#	Article	IF	CITATIONS
109	Overcoming formulation challenges for the next generation of vaccines. Expert Opinion on Drug Delivery, 2016, 13, 1501-1502.	5.0	0