Clotilde Mannoury La Cour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11397178/publications.pdf

Version: 2024-02-01

36 papers

1,917 citations

331670 21 h-index 35 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

2492 citing authors

#	Article	IF	CITATIONS
1	Interaction of the preferential D3 agonist (+)PHNO with dopamine D3-D2 receptor heterodimers and diverse classes of monoamine receptor: relevance for PET imaging. European Journal of Pharmacology, 2022, 925, 175016.	3.5	O
2	Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: Evidence for a key role for Gpr88 in multiple corticoâ€striatalâ€thalamic circuits. Genes, Brain and Behavior, 2021, 20, e12710.	2.2	9
3	Dual-acting agents for improving cognition and real-world function in Alzheimer's disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology, 2020, 177, 108099.	4.1	22
4	Knock-Down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and L-3-4-Dyhydroxyphenylalanine. Frontiers in Pharmacology, 2019, 10, 1233.	3 . 5	7
5	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	4.1	22
6	Distinctive binding properties of the negative allosteric modulator, [3 H]SB269,652, at recombinant dopamine D 3 receptors. European Journal of Pharmacology, 2018, 819, 181-189.	3. 5	5
7	Isoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	2.3	21
8	Design and synthesis of novel N-sulfonyl-2-indoles that behave as 5-HT6 receptor ligands with significant selectivity for D3 over D2 receptors. Bioorganic and Medicinal Chemistry, 2017, 25, 38-52.	3.0	10
9	Dysbindinâ€1 modifies signaling and cellular localization of recombinant, human D ₃ and D ₂ receptors. Journal of Neurochemistry, 2016, 136, 1037-1051.	3.9	7
10	Convergence of Melatonin and Serotonin (5-HT) Signaling at MT2/5-HT2C Receptor Heteromers. Journal of Biological Chemistry, 2015, 290, 11537-11546.	3.4	90
11	Design and synthesis of potential dual NK1/NK3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 510-514.	2.2	7
12	Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists. Molecular and Cellular Proteomics, 2014, 13, 1273-1285.	3.8	58
13	Design, Synthesis, and Optimization of Balanced Dual NK ₁ /NK ₃ Receptor Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 550-555.	2.8	15
14	Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nature Chemical Biology, 2014, 10, 590-597.	8.0	95
15	Transient and rapid activation of Akt/GSKâ€3β and <scp>mTORC</scp> 1 signaling by D3 dopamine receptor stimulation in dorsal striatum and nucleus accumbens. Journal of Neurochemistry, 2013, 125, 532-544.	3.9	31
16	S32212, a Novel Serotonin Type 2C Receptor Inverse Agonist/α ₂ -Adrenoceptor Antagonist and Potential Antidepressant: I. A Mechanistic Characterization. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 750-764.	2.5	14
17	Functional Homomers and Heteromers of Dopamine D2L and D3 Receptors Co-exist at the Cell Surface. Journal of Biological Chemistry, 2012, 287, 8864-8878.	3.4	41
18	5â€HT ₆ receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Molecular Medicine, 2012, 4, 1043-1056.	6.9	152

#	Article	IF	CITATIONS
19	The melatonergic agonist and clinically active antidepressant, agomelatine, is a neutral antagonist at 5-HT2C receptors. International Journal of Neuropsychopharmacology, 2011, 14, 768-783.	2.1	42
20	Signaling Pathways Leading to Phosphorylation of Akt and GSK-3β by Activation of Cloned Human and Rat Cerebral D ₂ and D ₃ Receptors. Molecular Pharmacology, 2011, 79, 91-105.	2.3	69
21	Inhibitory and facilitory actions of isocyanine derivatives at human and rat organic cation transporters 1, 2 and 3: A comparison to human $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -adrenoceptor subtypes. European Journal of Pharmacology, 2010, 634, 1-9.	3.5	20
22	The Tetrahydroisoquinoline Derivative SB269,652 Is an Allosteric Antagonist at Dopamine D ₃ and D ₂ Receptors. Molecular Pharmacology, 2010, 78, 925-934.	2.3	57
23	S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: A comparison to aprepitant (MK869) and paroxetine. European Neuropsychopharmacology, 2010, 20, 599-621.	0.7	16
24	Modulations of the amide function of the preferential dopamine D3 agonist (R,R)-S32504: Improvements of affinity and selectivity for D3 versus D2 receptors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2133-2138.	2.2	7
25	S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology, 2008, 199, 549-568.	3.1	109
26	Influence of positive allosteric modulators on GABA _B receptor coupling in rat brain: a scintillation proximity assay characterisation of G protein subtypes. Journal of Neurochemistry, 2008, 105, 308-323.	3.9	28
27	Actions of novel agonists, antagonists and antipsychotic agents at recombinant rat 5-HT6 receptors: A comparative study of coupling to Gî±s. European Journal of Pharmacology, 2008, 588, 170-177.	3.5	36
28	Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends in Pharmacological Sciences, 2008, 29, 454-464.	8.7	272
29	Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: A comparison to other agents. European Neuropsychopharmacology, 2008, 18, 729-750.	0.7	23
30	A Preferential Dopamine D ₃ versus D ₂ Receptor Antagonist and Potential Antipsychotic Agent: I. Receptor-Binding Profile and Functional Actions at G-Protein-Coupled	2.5	61
31	Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 587-599. Inverse Agonist and Neutral Antagonist Actions of Antidepressants at Recombinant and Native 5-Hydroxytryptamine _{2C} Receptors: Differential Modulation of Cell Surface Expression and Signal Transduction. Molecular Pharmacology, 2008, 73, 748-757.	2.3	101
32	Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology, 2006, 50, 941-952.	4.1	191
33	Regional Differences in the Coupling of 5-Hydroxytryptamine-1A Receptors to G Proteins in the Rat Brain. Molecular Pharmacology, 2006, 70, 1013-1021.	2.3	123
34	S32504, a Novel Naphtoxazine Agonist at Dopamine D3/D2 Receptors: I. Cellular, Electrophysiological, and Neurochemical Profile in Comparison with Ropinirole. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 903-920.	2.5	27
35	GABAB receptors in 5-HT transporter- and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. Journal of Neurochemistry, 2004, 89, 886-896.	3.9	33
36	Functional Consequences of 5-HT Transporter Gene Disruption on 5-HT _{1A} Receptor-Mediated Regulation of Dorsal Raphe and Hippocampal Cell Activity. Journal of Neuroscience, 2001, 21, 2178-2185.	3.6	96