Hadis Morkoç

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11394584/publications.pdf

Version: 2024-02-01

94433 53230 7,538 154 37 85 citations h-index g-index papers 191 191 191 7204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Platform for Complementary Metalâ€Oxideâ€Semiconductor Compatible Plasmonics: High Plasmonic Quality Titanium Nitride Thin Films on Si (001) with a MgO Interlayer. Advanced Photonics Research, 2021, 2, 2000210.	3.6	8
2	Highâ€Quality Plasmonic Materials TiN and ZnO:Al by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100227.	2.4	4
3	Highâ€Performance BeMgZnO/ZnO Heterostructure Fieldâ€Effect Transistors. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000371.	2.4	10
4	Electrical properties of BeMgZnO/ZnO heterostructures with high-density two-dimensional electron gas. , 2019, , .		1
5	Characterization of Ag Schottky Barriers on Be _{0.02} Mg _{0.26} ZnO/ZnO Heterostructures. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700366.	2.4	9
6	Polarity Control within One Monolayer at ZnO/GaN Heterointerface: (0001) Plane Inversion Domain Boundary. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37651-37660.	8.0	5
7	Fabrication of Schottky Diodes on Zn-polar BeMgZnO/ZnO Heterostructure Grown by Plasma-assisted Molecular Beam Epitaxy. Journal of Visualized Experiments, 2018, , .	0.3	1
8	Influence of ZnO thin film crystallinity on <i>in vitro</i> biocompatibility. Toxicology Research, 2018, 7, 754-759.	2.1	6
9	Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. , 2018, , 343-375.		17
10	An alternative material for transparent antennas for commercial and medical applications. Microwave and Optical Technology Letters, 2017, 59, 773-777.	1.4	34
11	Recent Development of Boron Nitride towards Electronic Applications. Advanced Electronic Materials, 2017, 3, 1600485.	5.1	98
12	Group III Nitrides. Springer Handbooks, 2017, , 1-1.	0.6	12
13	Hot-electron noise spectroscopy for HFET channels. , 2017, , .		2
14	Status of Growth of Group III-Nitride Heterostructures for Deep Ultraviolet Light-Emitting Diodes. Crystals, 2017, 7, 300.	2.2	39
15	Improvement of optical quality of semipolar (112 \hat{A}^- 2) GaN on <i>m-</i> plane sapphire by <i>in-situ</i> epitaxial lateral overgrowth. Journal of Applied Physics, 2016, 119, .	2.5	12
16	Polarity control and residual strain in ZnO epilayers grown by molecular beam epitaxy on (0001) GaN/sapphire. Physica Status Solidi - Rapid Research Letters, 2016, 10, 682-686.	2.4	19
17	Enhancement of optical and structural quality of semipolar (11-22) GaN by introducing nanoporous SiNxinterlayers. , 2015, , .		2
18	Indium-incorporation efficiency in semipolar (11-22) oriented InGaN-based light emitting diodes. , 2015, , .		6

#	Article	IF	CITATIONS
19	Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients. Proceedings of SPIE, 2015, , .	0.8	3
20	Strong carrier localization in stacking faults in semipolar (11-22) GaN. Proceedings of SPIE, 2015, , .	0.8	2
21	Saga of efficiency degradation at high injection in InGaN light emitting diodes. Turkish Journal of Physics, 2014, 38, 269-313.	1.1	11
22	Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements. Proceedings of SPIE, 2014, , .	0.8	0
23	Thickness Variations and Absence of Lateral Compositional Fluctuations in Aberration-Corrected STEM Images of InGaN LED Active Regions at Low Dose. Microscopy and Microanalysis, 2014, 20, 864-868.	0.4	10
24	InGaN light-emitting diodes: Efficiency-limiting processes at high injection. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	38
25	Electron energy relaxation in wurtzite ZnO and GaN., 2013,,.		1
26	Enhanced microwave dielectric tunability of Ba0.5Sr0.5TiO3 thin films grown with reduced strain on DyScO3 substrates by three-step technique. Journal of Applied Physics, 2013, 113, 044108.	2.5	13
27	Carrier dynamics in bulk GaN. Journal of Applied Physics, 2012, 111, .	2.5	65
28	Carrier dynamics under two- and single-photon excitation in bulk GaN. Physica Status Solidi (B): Basic Research, 2012, 249, 503-506.	1.5	4
29	The effect of barrier strain on the reliability of In <i>_x</i> Al _{1–<i>x</i>} N/AlN/GaN heterostructure fieldâ€effect transistors. Physica Status Solidi - Rapid Research Letters, 2012, 6, 163-165.	2.4	1
30	Photoluminescence of Mgâ€doped <i>m</i> à€plane GaN grown by MOCVD on bulk GaN substrates. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1532-1534.	1.8	6
31	Measurements of generationâ€recombination effect by lowâ€frequency phaseâ€noise technique in AlGaN/GaN MOSHFETs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1539-1543.	0.8	6
32	Reduction of Flicker Noise in AlGaN/GaN-Based HFETs After High Electric-Field Stress. IEEE Electron Device Letters, 2011, 32, 1513-1515.	3.9	4
33	Field-assisted emission in AlGaN/GaN heterostructure field-effect transistors using low-frequency noise technique. Journal of Applied Physics, 2011, 109, .	2.5	19
34	ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proceedings of the IEEE, 2010, 98, 1255-1268.	21.3	669
35	Bulk ZnO: Current Status, Challenges, and Prospects. Proceedings of the IEEE, 2010, 98, 1339-1350.	21.3	43
36	GaN-Based Light-Emitting Diodes: Efficiency at High Injection Levels. Proceedings of the IEEE, 2010, 98, 1180-1196.	21.3	103

3

#	Article	IF	Citations
37	Doping Asymmetry Problem in ZnO: Current Status and Outlook. Proceedings of the IEEE, 2010, 98, 1269-1280.	21.3	179
38	Small Signal Equivalent Circuit Modeling for AlGaN/GaN HFET: Hybrid Extraction Method for Determining Circuit Elements of AlGaN/GaN HFET. Proceedings of the IEEE, 2010, 98, 1140-1150.	21.3	63
39	Status of Reliability of GaN-Based Heterojunction Field Effect Transistors. Proceedings of the IEEE, 2010, 98, 1127-1139.	21.3	31
40	Ferromagnetism in ZnO- and GaN-Based Diluted Magnetic Semiconductors: Achievements and Challenges. Proceedings of the IEEE, 2010, 98, 1288-1301.	21.3	26
41	Effect of carrier spillover and Auger recombination on the efficiency droop in InGaN-based blue LEDs. Superlattices and Microstructures, 2010, 47, 118-122.	3.1	17
42	Stress test measurements of lattice-matched InAlN/AlN/GaN HFET structures. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1345-1347.	1.8	2
43	Microstructure and field mapping of AllnN-based heterostructures and devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2436-2439.	0.8	5
44	Ti/Al/Ni/Au Ohmic contacts for AllnN/AlN/GaN-based heterojunction field-effect transistors. Journal of Applied Physics, 2010, 107, .	2.5	28
45	Low-Frequency Noise Measurements of AlGaN/GaN Metal–Oxide–Semiconductor Heterostructure Field-Effect Transistors With HfAlO Gate Dielectric. IEEE Electron Device Letters, 2010, 31, 1041-1043.	3.9	21
46	Self-Assembled Guanosine-Based Nanoscale Molecular Photonic Devices. , 2010, , 77-99.		0
47	Effect of large strain on dielectric and ferroelectric properties of Ba0.5Sr0.5TiO3 thin films. Applied Physics Letters, 2009, 95, 012907.	3.3	15
48	Epitaxial growth of (001)-oriented Ba0.5Sr0.5TiO3 thin films on a-plane sapphire with an MgO/ZnO bridge layer. Applied Physics Letters, 2009, 95, 212901.	3.3	17
49	Hot phonons in InAlN/AlN/GaN heterostructure 2DEG channels. Proceedings of SPIE, 2009, , .	0.8	10
50	On the Light Emission in GaN Based Heterostructures at High Injection. Materials Research Society Symposia Proceedings, 2009, 1202, 23.	0.1	1
51	Microwave ferrites, part 1: fundamental properties. Journal of Materials Science: Materials in Electronics, 2009, 20, 789-834.	2.2	348
52	Microwave ferrites, part 2: passive components and electrical tuning. Journal of Materials Science: Materials in Electronics, 2009, 20, 911-952.	2,2	110
53	Intrinsic Polarization of Self-Assembled Guanosine Supramolecules in GaN-Based Metal–Semiconductor–Metal Nano-Structures. Journal of Display Technology, 2009, 5, 446-451.	1.2	2
54	High- $\hat{\mathbb{I}}^2$ dielectrics and advanced channel concepts for Si MOSFET. Journal of Materials Science: Materials in Electronics, 2008, 19, 915-951.	2,2	73

#	Article	IF	Citations
55	Polarization in GaN Based Heterostructures and Heterojunction Field Effect Transistors (HFETs)., 2008, , 373-466.		2
56	Large pyroelectric effect in undoped epitaxial Pb(Zr,Ti)O3 thin films on SrTiO3 substrates. Applied Physics Letters, 2008, 93, 052913.	3.3	27
57	On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Applied Physics Letters, 2008, 93, .	3.3	301
58	Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells. Applied Physics Letters, 2008, 93, .	3.3	208
59	Studies of III-Nitride Superlattice Structures Implanted with Lanthanide Ions. Materials Research Society Symposia Proceedings, 2008, 1111, 1.	0.1	3
60	Large electro-optic effect in single-crystal Pb(Zr,Ti)O3 (001) measured by spectroscopic ellipsometry. Journal of Applied Physics, 2008, 104, 093103.	2.5	18
61	Comparative Study of Thin PZT Sol-gel Films Deposited on Pt and GaN Substrates. Materials Research Society Symposia Proceedings, 2007, 1034, 152.	0.1	0
62	Structural and electrical properties of Pb(Zr,Ti)O3 grown on (0001) GaN using a double PbTiO3â^•PbO bridge layer. Applied Physics Letters, 2007, 91, .	3.3	29
63	Epitaxial growth of ZrO2 on GaN templates by oxide molecular beam epitaxy. Applied Physics Letters, 2007, 91, 022916.	3.3	3
64	A General Nonlithographic Method for Producing Nanodots by RIE Etching. Materials Research Society Symposia Proceedings, 2007, 1059, 1.	0.1	0
65	Hydrostatic Pressure Studies of GaN/AlGaN/GaN Heterostructure Devices with Varying AlGaN Thickness and Composition. Materials Research Society Symposia Proceedings, 2007, 994, 1.	0.1	0
66	Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	0
67	Blue and Yellow Luminescence in ZnO Films Grown by Peroxide MBE. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	0
68	Photoelectrochemical Etching of GaN Thin Films With Varying Carrier Concentrations. Materials Research Society Symposia Proceedings, 2007, 1040, 1.	0.1	0
69	High electron mobility in nearly lattice-matched AllnNâ^•AlNâ^•GaN heterostructure field effect transistors. Applied Physics Letters, 2007, 91, 132116.	3.3	107
70	Defect reduction in GaN epilayers grown by metal-organic chemical vapor deposition with in situ SiNx nanonetwork. Applied Physics Letters, 2007, 90, 262112.	3.3	21
71	I-V characteristics of Auâ^•Ni Schottky diodes on GaN with SiNx nanonetwork. Applied Physics Letters, 2006, 89, 152108.	3.3	14
72	Epitaxial Growth of ZrO2 on GaN by MOMBE for High Dielectric Material Applications. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0

#	Article	IF	CITATIONS
73	III-V Nitrides and Silicon Carbide as Optoelectronic Materials. , 2006, , 4-1-4-59.		0
74	GaN-Based Modulation-Doped FETs and Heterojunction Bipolar Transistors., 2006,, 547-626.		2
75	Near-infrared wavelength intersubband transitions in GaNâ^•AlN short period superlattices. Applied Physics Letters, 2006, 89, 151112.	3.3	12
76	Electrical Characterization of Isotype n-ZnO/n-GaN Heterostructures. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
77	Investigation of Epitaxially Grown PbO, TiO2 and ZrO2 as Bridge Layers for Integration of PZT on GaN by MBE. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	1
78	Persistent Photoconductivity in High-mobility AlxGa1â^'xN/AlN/GaN Heterostructures Grown by Metal-organic Vapor-phase Epitaxy. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
79	Transport Properties and Conduction Band Offset of n-ZnO/n-6H-SiC Heterostructures. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
80	Schottky I-V Characteristics of Au/Ni/GaN/SiNx nanonework/sapphire structures. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
81	1.37 - 2.90 Micron Intersubband Transitions in GaN/AlN Superlattices. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
82	Structural and Optical Properties of PbTiO3 Grown on SrTiO3 Substrates by Peroxide MBE. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	4
83	Growth of High-Quality Pb(ZrxTi1-x)O3 Films by Peroxide MBE and Their Optical and Structural Characteristics. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	2
84	Effects of Rapid Thermal Annealing Treatment on the Surface Band Bending of n-type GaN Studied by Surface Potential Electric Force Microscopy. Materials Science Forum, 2006, 527-529, 1529-1532.	0.3	3
85	High quality epitaxial growth of PbTiO3 by molecular beam epitaxy using H2O2 as the oxygen source. Applied Physics Letters, 2006, 89, 122912.	3.3	19
86	Fabrication and current-voltage characterization of a ferroelectric lead zirconate titanate/AlGaNâ [•] GaN field effect transistor. Applied Physics Letters, 2006, 88, 123508.	3.3	40
87	Group III Nitrides. , 2006, , 753-804.		4
88	Luminescence properties of defects in GaN. Journal of Applied Physics, 2005, 97, 061301.	2.5	1,664
89	Visible-ultraviolet spectroscopic ellipsometry of lead zirconate titanate thin films. Applied Physics Letters, 2005, 86, 262902.	3.3	16
90	Dielectric functions and electronic band structure of lead zirconate titanate thin films. Journal of Applied Physics, 2005, 98, 094108.	2.5	62

#	Article	IF	CITATIONS
91	Resonant surface plasmon-induced modification of photoluminescence from GaN/AlN quantum dots. Nanotechnology, 2004, 15, 1252-1255.	2.6	25
92	Surface band bending in as-grown and plasma-treated n-type GaN films using surface potential electric force microscopy. Applied Physics Letters, 2004, 84, 3070-3072.	3.3	42
93	GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces. Applied Physics Letters, 2004, 84, 2268-2270.	3.3	62
94	Epitaxy of highly optical efficient GaN on O and Zn face ZnO. Materials Research Society Symposia Proceedings, 2003, 798, 748.	0.1	0
95	Generation–recombination noise in gallium nitride-based quantum well structures. Journal of Applied Physics, 2003, 93, 5337-5345.	2.5	9
96	Infrared optical absorbance of intersubband transitions in GaN/AlGaN multiple quantum well structures. Journal of Applied Physics, 2003, 93, 10140-10142.	2.5	15
97	Stimulated emission and ultrafast carrier relaxation in AlGaN/GaN multiple quantum wells. Applied Physics Letters, 2003, 82, 4080-4082.	3.3	12
98	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 799, 257.	0.1	0
99	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 789, 334.	0.1	0
100	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 794, 177.	0.1	0
101	GROWTH OF III-NITRIDE SEMICONDUCTORS AND THEIR CHARACTERIZATION. , 2003, , 1-124.		0
102	GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS. International Journal of High Speed Electronics and Systems, 2002, 12, 79-110.	0.7	21
103	Energy band bowing parameter in AlxGa1â^'xN alloys. Journal of Applied Physics, 2002, 92, 4837-4839.	2.5	120
104	Bowing Parameter of AlxGa1-xN. Materials Research Society Symposia Proceedings, 2002, 722, 321.	0.1	0
105	GaN-based modulation doped FETs and UV detectors. Solid-State Electronics, 2002, 46, 157-202.	1.4	153
106	Systematic measurement of AlxGa1â^'xN refractive indices. Applied Physics Letters, 2001, 79, 4103-4105.	3.3	77
107	III-Nitride semiconductor growth by MBE: Recent issues. Journal of Materials Science: Materials in Electronics, 2001, 12, 677-695.	2.2	33
108	Investigation of Buffer Layers for GaN Grown by MBE. Materials Research Society Symposia Proceedings, 2000, 639, 3171.	0.1	2

#	Article	IF	CITATIONS
109	POLARIZATION EFFECTS IN NITRIDE SEMICONDUCTOR HETEROSTRUCTURES. International Journal of High Speed Electronics and Systems, 2000, 10, 25-37.	0.7	6
110	Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN. Applied Physics Letters, 1999, 74, 3353-3355.	3.3	49
111	Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors. Solid-State Electronics, 1999, 43, 1909-1927.	1.4	102
112	Microcalorimetric absorption spectroscopy in GaN–AlGaN quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 319-322.	3.5	0
113	Polarization effects in nitride semiconductors and device structures. Materials Research Innovations, 1999, 3, 97-106.	2.3	17
114	Optical Processes in Nitride Semiconductors. Springer Series in Materials Science, 1999, , 295-339.	0.6	0
115	Metal Contacts to GaN. Springer Series in Materials Science, 1999, , 191-215.	0.6	2
116	Electronic Band Structure of Bulk and QW Nitrides. Springer Series in Materials Science, 1999, , 45-82.	0.6	1
117	Recombination dynamics of free and localized excitons in GaN/GaO.93AlO.07N quantum wells. Physical Review B, 1998, 57, R9447-R9450.	3.2	109
118	In situtransmission electron microscopy of AlN growth by nitridation of (0001) \hat{l} ±-Al2O3. Journal of Applied Physics, 1998, 83, 2847-2850.	2.5	38
119	<title>Megahertz bandwidth AlxGa1-xN/GaN-based p-i-n detectors</title> ., 1998, 3287, 198.		6
120	Metal–insulator–semiconductor structure on GaAs using a pseudomorphic Si/GaP interlayer. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 252.	1.6	4
121	On the inversion in GaAs metal-insulator-semiconductor heterostructures. Applied Physics Letters, 1997, 70, 228-230.	3.3	2
122	Minority-carrier characteristics of SiNx/GaAs metal–insulator–semiconductor structures with Si/Ge interlayers. Applied Physics Letters, 1997, 71, 1210-1212.	3.3	12
123	Proposed explanation of the anomalous doping characteristics of Ill–V nitrides. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 131-143.	0.6	12
124	Si3N4/Si/In0.05Ga0.95As/n–GaAs metal–insulator–semiconductor devices. Journal of Applied Physics, 1997, 81, 516-523.	2.5	6
125	Characteristics of Si3N4/GaAs metal-Insulator-semiconductor interfaces with coherent Si/Al0.3Ga0.7As interlayers. Journal of Electronic Materials, 1997, 26, 1076-1082.	2.2	4
126	Very low resistance multilayer Ohmic contact to nâ€GaN. Applied Physics Letters, 1996, 68, 1672-1674.	3.3	436

#	Article	IF	CITATIONS
127	Oscillator strengths for optical band-to-band processes in GaN epilayers. Physical Review B, 1996, 54, 7678-7681.	3.2	81
128	Metalâ€insulatorâ€semiconductor structures on pâ€type GaAs with low interface state density. Applied Physics Letters, 1996, 69, 230-232.	3.3	37
129	Theoretical investigation of electrical characteristics of AlGaN/GaN modulation doped fieldâ€effect transistors. Journal of Applied Physics, 1996, 80, 3031-3042.	2.5	78
130	Photoluminescence characterization of the quantum well structure and influence of optical illumination on the electrical performance of AlGaN/GaN modulationâ€doped fieldâ€effect transistors. Applied Physics Letters, 1996, 69, 1420-1422.	3.3	59
131	Characteristics of Si3N4/Si/nâ€GaAs metalâ€insulatorâ€semiconductor interfaces grown on GaAs(111)B substrate. Applied Physics Letters, 1996, 69, 3025-3027.	3.3	9
132	Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped fieldâ€effect transistors. Applied Physics Letters, 1996, 69, 1229-1231.	3.3	53
133	Interface properties of Si ₃ N ₄ Si/n-GaAs metal-msulator-semiconductor structure using a Si interlayer. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 219-234.	0.6	12
134	Electrical conduction in silicon nitrides deposited by plasma enhanced chemical vapour deposition. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 723-736.	0.6	51
135	LATTICE-MISMATCHED HETEROEPITAXY. , 1995, , 145-209.		0
136	Properties of GaAs on Si grown by molecular beam epitaxy. Critical Reviews in Solid State and Materials Sciences, 1990, 16, 91-114.	12.3	30
137	Cathodoluminescence measurement of an orientation dependent aluminum concentration in AlxGa1â^2xAs epilayers grown by molecular beam epitaxy on a nonplanar substrate. Applied Physics Letters, 1989, 54, 1347-1349.	3.3	33
138	Measurement of the minorityâ€carrier lifetime and injection efficiency in AlGaAs/GaAs heterojunction bipolar transistors. Applied Physics Letters, 1986, 48, 367-369.	3.3	6
139	Experimental study of the frequency limits of a resonant tunneling oscillator. Applied Physics Letters, 1986, 48, 422-424.	3.3	30
140	ApnpAlGaAs/GaAs heterojunction bipolar transistor. Applied Physics Letters, 1985, 46, 302-304.	3.3	18
141	Collectorâ€emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors. Applied Physics Letters, 1985, 47, 313-315.	3.3	93
142	New high-speed (Al, Ga) as modulation doped field-effect transistors. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 1985, 1, 35-38.	0.4	1
143	Modulation Doped A1xGa1-xAs/GaAs Field Effect Transistors (MODFETS): Analysis, Fabrication and Performance., 1985,, 625-676.		5
144	Temperature dependence of current gain in AlGaAs/GaAs heterojunction bipolar transistors. Applied Physics Letters, 1984, 45, 1086-1088.	3.3	36

#	Article	IF	CITATIONS
145	Comprehensive analysis of Si-dopedAlxGa1â^'xAs(x=0ÂtoÂ1): Theory and experiments. Physical Review B, 1984, 30, 4481-4492.	3.2	398
146	Electron density of the twoâ€dimensional electron gas in modulation doped layers. Journal of Applied Physics, 1983, 54, 2093-2096.	2.5	131
147	Transport properties of Snâ€doped AlxGa1â^'xAs grown by molecular beam epitaxy. Journal of Applied Physics, 1980, 51, 4882-4884.	2.5	40
148	Chromium and tellurium redistribution in GaAs and Al0.3Ga0.7As grown by molecular beam epitaxy. Journal of Applied Physics, 1980, 51, 5986-5991.	2.5	23
149	Highâ€purity GaAs and Crâ€doped GaAs epitaxial layers by MBE. Journal of Applied Physics, 1979, 50, 6413-6416.	2.5	57
150	Purity of GaAs grown by LPE in a graphite boat. Journal of Crystal Growth, 1976, 36, 109-114.	1.5	28
151	The Growth of Uniform Submicron GaAs Layers by Liquid Phase Epitaxy. Journal of the Electrochemical Society, 1976, 123, 906-912.	2.9	13
152	Appendix: Periodic Table of Pertinent Elements. , 0, , 847-847.		0
153	Determination of Impurity and Carrier Concentrations. , 0, , 121-163.		0
154	Modulation Doped FETs. , 0, , .		0