Marco Tasin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1139138/publications.pdf

Version: 2024-02-01

55	1,523 citations	279798	330143
papers	citations	h-index	g-index
55	55	55	1357
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Attract, reward and disrupt: responses of pests and natural enemies to combinations of habitat manipulation and semiochemicals in organic apple. Journal of Pest Science, 2022, 95, 619-631.	3.7	7
2	Using flower strips to promote green lacewings to control cabbage insect pests. Journal of Pest Science, 2022, 95, 669-683.	3.7	16
3	Predatory arthropod community composition in apple orchards: Orchard management, landscape structure and sampling method. Journal of Applied Entomology, 2021, 145, 46-54.	1.8	6
4	Comparison of New Kairomone-Based Lures for Cydia pomonella (Lepidoptera: Tortricidae) in Italy and USA. Insects, 2021, 12, 72.	2.2	11
5	Development of multiâ€component nonâ€sex pheromone blends to monitor both sexes of Cydia pomonella (Lepidoptera: Tortricidae). Journal of Applied Entomology, 2021, 145, 822-830.	1.8	4
6	Species-Specific Induction of Plant Volatiles by Two Aphid Species in Apple: Real Time Measurement of Plant Emission and Attraction of Lacewings in the Wind Tunnel. Journal of Chemical Ecology, 2021, 47, 653-663.	1.8	13
7	Managementâ€dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 2021, 58, 2843-2853.	4.0	26
8	Design of ideal vibrational signals for stinkbug male attraction through vibrotaxis experiments. Pest Management Science, 2021, 77, 5498-5508.	3.4	8
9	Monitoring methods adapted to different perceptions and uses of functional biodiversity: Insights from a European qualitative study. Ecological Indicators, 2021, 129, 107883.	6.3	5
10	Tuning stakeholder expectations in organic strawberry production – A sixteen-year case study of co-development of a strawberry knowledge network in California. Journal of Cleaner Production, 2021, 323, 129192.	9.3	3
11	Assessing allelochemicals as species-specific attractants for the cherry bark tortrix, Enarmonia formosana (Lepidoptera: Tortricidae). Crop Protection, 2020, 138, 105323.	2.1	1
12	Attraction of Chrysotropia ciliata (Neuroptera, Chrysopidae) Males to P-Anisaldehyde, a Compound with Presumed Pheromone Function. Journal of Chemical Ecology, 2020, 46, 597-609.	1.8	4
13	Large-scale genetic admixture suggests high dispersal in an insect pest, the apple fruit moth. PLoS ONE, 2020, 15, e0236509.	2.5	5
14	Aphid-infested beans divert ant attendance from the rosy apple aphid in apple-bean intercropping. Scientific Reports, 2020, 10, 8209.	3.3	5
15	Monitoring and discrimination of Pandemis moths in apple orchards using semiochemicals, wing pattern morphology and DNA barcoding. Crop Protection, 2020, 132, 105110.	2.1	5
16	Designing a species-selective lure based on microbial volatiles to target Lobesia botrana. Scientific Reports, 2020, 10, 6512.	3.3	8
17	Development of sustainable plant protection programs through multi-actor Co-innovation: An 8-year case study in Swedish apple production. Journal of Cleaner Production, 2019, 234, 1178-1191.	9.3	6
18	Farmers' management of functional biodiversity goes beyond pest management in organic European apple orchards. Agriculture, Ecosystems and Environment, 2019, 284, 106555.	5.3	30

#	Article	IF	Citations
19	Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions. Insects, 2019, 10, 247.	2.2	40
20	Monitoring codling moth (Lepidoptera: Tortricidae) with a fourâ€component volatile blend compared to a sex pheromoneâ€based blend. Journal of Applied Entomology, 2019, 143, 942-947.	1.8	12
21	Addition of terpenoids to pear ester plus acetic acid increases catches of codling moth (Lepidoptera:) Tj ETQq1 1	0.78431 1.8	4 rgBT /Over
22	Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agriculture, Ecosystems and Environment, 2019, 278, 43-53.	5.3	48
23	Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agriculture, Ecosystems and Environment, 2019, 278, 61-71.	5.3	39
24	Management tradeâ€offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. Journal of Applied Ecology, 2019, 56, 802-811.	4.0	59
25	Predatory arthropods in apple orchards across Europe: Responses to agricultural management, adjacent habitat, landscape composition and country. Agriculture, Ecosystems and Environment, 2019, 273, 141-150.	5.3	34
26	Recruiting on the Spot: A Biodegradable Formulation for Lacewings to Trigger Biological Control of Aphids. Insects, 2019, 10, 6.	2.2	8
27	Potential of locally sustainable food baits and traps against the Mediterranean fruit fly <i>Ceratitis capitata</i> in Bolivia. Pest Management Science, 2019, 75, 1671-1680.	3.4	6
28	Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Microbial Ecology, 2018, 76, 751-761.	2.8	23
29	Adjusting the scent ratio: using genetically modified <i>Vitis vinifera</i> plants to manipulate European grapevine moth behaviour. Plant Biotechnology Journal, 2018, 16, 264-271.	8.3	46
30	Productivist or multifunctional: An activity theory approach to the development of organic farming concepts in Sweden. Agroecology and Sustainable Food Systems, 2018, 42, 210-239.	1.9	3
31	A Wind Tunnel for Odor Mediated Insect Behavioural Assays. Journal of Visualized Experiments, 2018, ,	0.3	5
32	Organic management in apple orchards: Higher impacts on biological control than on pollination. Journal of Applied Ecology, 2018, 55, 2779-2789.	4.0	58
33	The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth. Frontiers in Plant Science, 2017, 8, 2206.	3.6	14
34	Hail nets enhance disruption of sexual communication by synthetic pheromone in codling moth. Entomologia Generalis, 2017, 37, 7-18.	3.1	1
35	Emission of Volatile Compounds from Apple Plants Infested with Pandemis heparana Larvae, Antennal Response of Conspecific Adults, and Preliminary Field Trial. Journal of Chemical Ecology, 2016, 42, 1265-1280.	1.8	30
36	Sunflower as a trap crop for the European tarnished plant bug (<i>Lygus rugulipennis</i>). Journal of Applied Entomology, 2016, 140, 453-461.	1.8	15

#	Article	IF	Citations
37	Mating disruption of <i>Spilonota ocellana</i> and other apple orchard tortricids using a multispecies reservoir dispenser. Pest Management Science, 2015, 71, 562-570.	3.4	15
38	Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. Basic and Applied Ecology, 2015, 16, 354-364.	2.7	14
39	Disruption of Phthorimaea operculella (Lepidoptera: Gelechiidae) oviposition by the application of host plant volatiles. Pest Management Science, 2014, 70, 628-635.	3.4	27
40	Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130267.	2.6	56
41	Early quality assessment lessens pheromone specificity in a moth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7377-7382.	7.1	31
42	Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS). Sensors, 2012, 12, 4091-4104.	3.8	10
43	Smelling a diseased host: grapevine moth responses to healthy and fungus-infected grapes. Animal Behaviour, 2012, 83, 555-562.	1.9	49
44	Volatiles that encode host-plant quality in the grapevine moth. Phytochemistry, 2011, 72, 1999-2005.	2.9	36
45	Oviposition Response of the Moth Lobesia botrana to Sensory Cues from a Host Plant. Chemical Senses, 2011, 36, 633-639.	2.0	33
46	Attraction of Female Grapevine Moth to Common and Specific Olfactory Cues from 2 Host Plants. Chemical Senses, 2010, 35, 57-64.	2.0	63
47	Synthetic Grape Volatiles Attract Mated Lobesia botrana Females in Laboratory and Field Bioassays. Journal of Chemical Ecology, 2009, 35, 1054-1062.	1.8	82
48	Responses of the Mediterranean Pine Shoot Beetle Tomicus destruens (Wollaston) to Pine Shoot and Bark Volatiles. Journal of Chemical Ecology, 2008, 34, 1162-1169.	1.8	23
49	Effect of antiâ€hail nets on C <i>ydiaÂpomonella</i> behavior in apple orchards. Entomologia Experimentalis Et Applicata, 2008, 129, 32-36.	1.4	34
50	Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry, 2007, 68, 203-209.	2.9	118
51	Wind tunnel attraction of grapevine moth females, Lobesia Botrana, to natural and artificial grape odour. Chemoecology, 2006, 16, 87-92.	1.1	49
52	Essential host plant cues in the grapevine moth. Die Naturwissenschaften, 2006, 93, 141-144.	1.6	102
53	Attractiveness of year-old polyethylene Isonet sex pheromone dispensers for Lobesia botrana. Entomologia Experimentalis Et Applicata, 2005, 117, 201-207.	1.4	13
54	ANTENNAL AND BEHAVIORAL RESPONSES OF GRAPEVINE MOTH Lobesia botrana FEMALES TO VOLATILES FROM GRAPEVINE. Journal of Chemical Ecology, 2005, 31, 77-87.	1.8	120

#	Article	IF	CITATIONS
55	New Pheromone Components of the Grapevine Moth Lobesia botrana. Journal of Chemical Ecology, 2005, 31, 2923-2932.	1.8	25