Young Shik Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11391223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Real-Time Measurements of DNA Hybridization with Alkylated Nonoxidized Silicon Nanowires in Electrolyte Solution. Journal of the American Chemical Society, 2006, 128, 16323-16331.	13.7	469
2	PDMS-based micro PCR chip with Parylene coating. Journal of Micromechanics and Microengineering, 2003, 13, 768-774.	2.6	356
3	Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 419-424.	7.1	300
4	Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.	16.8	140
5	Chemical Methods for the Simultaneous Quantitation of Metabolites and Proteins from Single Cells. Journal of the American Chemical Society, 2015, 137, 4066-4069.	13.7	87
6	Quantitating Cell–Cell Interaction Functions with Applications to Glioblastoma Multiforme Cancer Cells. Nano Letters, 2012, 12, 6101-6106.	9.1	78
7	Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications. Annual Review of Analytical Chemistry, 2014, 7, 275-295.	5.4	65
8	A multi-channel electroporation microchip for gene transfection in mammalian cells. Biosensors and Bioelectronics, 2007, 22, 3273-3277.	10.1	64
9	Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluidics and Nanofluidics, 2009, 7, 149-167.	2.2	64
10	Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the United States of America, 2013, 110, E1352-60.	7.1	61
11	Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling. Biophysical Journal, 2011, 100, 2378-2386.	0.5	55
12	Electrotransfection of Mammalian Cells Using Microchannel-Type Electroporation Chip. Analytical Chemistry, 2004, 76, 7045-7052.	6.5	53
13	Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System. Journal of the American Chemical Society, 2010, 132, 2254-2263.	13.7	49
14	Chemistries for Patterning Robust DNA MicroBarcodes Enable Multiplex Assays of Cytoplasm Proteins from Single Cancer Cells. ChemPhysChem, 2010, 11, 3063-3069.	2.1	47
15	Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Medicine, 2013, 5, 75.	8.2	46
16	Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry. Journal of Physical Chemistry B, 2010, 114, 9496-9503.	2.6	37
17	Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5520-5525.	7.1	37
18	Critical Points in Tumorigenesis: A Carcinogenâ€Initiated Phase Transition Analyzed via Single ell Proteomics. Small, 2016, 12, 1425-1431.	10.0	19

#	Article	IF	CITATIONS
19	A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins. Review of Scientific Instruments, 2011, 82, 094301.	1.3	12
20	A microfluidic-based bubble generation platform enables analysis of physical property change in phospholipid surfactant layers by interfacial ozone reaction. Lab on A Chip, 2012, 12, 5243.	6.0	4
21	Quantitative assessments of glycolysis from single cells. Technology, 2015, 03, 172-178.	1.4	3