
Young-Wan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11389329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic and Structural Analysis of a Family 31 α-Glycosidase and Its Glycosyl-enzyme Intermediate. Journal of Biological Chemistry, 2005, 280, 2105-2115.	3.4	156
2	Directed Evolution of a Glycosynthase from Agrobacterium sp. Increases Its Catalytic Activity Dramatically and Expands Its Substrate Repertoire. Journal of Biological Chemistry, 2004, 279, 42787-42793.	3.4	116
3	Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. FEBS Journal, 1998, 253, 251-262.	0.2	106
4	Directed Evolution of Thermus Maltogenic Amylase toward Enhanced Thermal Resistance. Applied and Environmental Microbiology, 2003, 69, 4866-4874.	3.1	98
5	Active-site Peptide "Fingerprinting―of Glycosidases in Complex Mixtures by Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 35126-35135.	3.4	73
6	Expanding the Thioglycoligase Strategy to the Synthesis of α-Linked Thioglycosides Allows Structural Investigation of the Parent Enzyme/Substrate Complex. Journal of the American Chemical Society, 2006, 128, 2202-2203.	13.7	72
7	The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydrate Polymers, 2007, 67, 164-173.	10.2	72
8	Properties of a Novel Thermostable Glucoamylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus in Relation to Starch Processing. Applied and Environmental Microbiology, 2004, 70, 3933-3940.	3.1	65
9	Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydrate Polymers, 2009, 75, 9-14.	10.2	60
10	Glycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from Cellulomonas fimi. Organic and Biomolecular Chemistry, 2006, 4, 2025.	2.8	58
11	Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. BBA - Proteins and Proteomics, 2000, 1478, 333-340.	2.1	55
12	Role of Maltogenic Amylase and Pullulanase in Maltodextrin and Glycogen Metabolism of Bacillus subtilis 168. Journal of Bacteriology, 2009, 191, 4835-4844.	2.2	48
13	Modulation of the Multisubstrate Specificity of Thermus Maltogenic Amylase by Truncation of the N-Terminal Domain and by a Salt-Induced Shift of the Monomer/Dimer Equilibrium. Biochemistry, 2001, 40, 14182-14190.	2.5	45
14	Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR. Protein Engineering, Design and Selection, 2004, 17, 205-211.	2.1	44
15	Gene cloning and characterization of a trehalose synthase from Corynebacterium glutamicum ATCC13032. Food Science and Biotechnology, 2010, 19, 565-569.	2.6	38
16	Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1510-1519.	2.3	37
17	Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 661-669.	2.3	36
18	Modulation of Cyclizing Activity and Thermostability of Cyclodextrin Glucanotransferase and Its Application as an Antistaling Enzyme. Journal of Agricultural and Food Chemistry, 2002, 50, 1411-1415.	5.2	34

YOUNG-WAN KIM

#	Article	IF	CITATIONS
19	Thioglycoligaseâ€Based Assembly of Thiodisaccharides: Screening as βâ€Galactosidase Inhibitors. ChemBioChem, 2007, 8, 1495-1499.	2.6	34
20	A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochemical and Biophysical Research Communications, 2002, 295, 818-825.	2.1	31
21	Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World Journal of Microbiology and Biotechnology, 2013, 29, 673-682.	3.6	29
22	Efficient constitutive expression of thermostable 4-α-glucanotransferase in Bacillus subtilis using dual promoters. World Journal of Microbiology and Biotechnology, 2010, 26, 1915-1918.	3.6	26
23	Comparison of ELISA and HPLC methods for the determination of biogenic amines in commercial doenjang and gochujang. Food Science and Biotechnology, 2011, 20, 1747-1750.	2.6	24
24	Enzymatic transglycosylation of xylose using a glycosynthase. Carbohydrate Research, 2005, 340, 2735-2741.	2.3	23
25	Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption. Enzyme and Microbial Technology, 2016, 93-94, 150-156.	3.2	21
26	Catalytic properties of a mutant β-galactosidase fromXanthomonas manihotisengineered to synthesize galactosyl-thio-β-1,3 and -β-1,4-glycosides. FEBS Letters, 2006, 580, 4377-4381.	2.8	20
27	O-Clycoligases, a new category of glycoside bond-forming mutant glycosidases, catalyse facile syntheses of isoprimeverosides. Chemical Communications, 2010, 46, 8725.	4.1	20
28	Construction of a Bifunctional Enzyme Fusion for the Combined Determination of Biogenic Amines in Foods. Journal of Agricultural and Food Chemistry, 2013, 61, 9118-9124.	5.2	20
29	Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from <i>Bacillus stearothermophilus</i> expressed in <i>Bacillus subtilis</i> . Journal of the Science of Food and Agriculture, 2010, 90, 1179-1184.	3.5	17
30	Physicochemical interactions of cycloamylose with phenolic compounds. Carbohydrate Polymers, 2017, 174, 980-989.	10.2	17
31	High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase. Food Science and Biotechnology, 2016, 25, 1413-1419.	2.6	16
32	Specificity Fingerprinting of Retaining βâ€1,4â€Glycanases in the <i>Cellulomonas fimi</i> Secretome Using Two Fluorescent Mechanismâ€Based Probes. ChemBioChem, 2007, 8, 2125-2132.	2.6	14
33	Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state. FEBS Journal, 2006, 273, 109-121.	4.7	13
34	α-Thioglycoligase-based synthesis of O-aryl α-glycosides as chromogenic substrates for α-glycosidases. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 24-29.	1.8	13
35	Changes in the Catalytic Properties of <i>Pyrococcus furiosus</i> Thermostable Amylase by Mutagenesis of the Substrate Binding Sites. Applied and Environmental Microbiology, 2007, 73, 5607-5612.	3.1	12
36	Overproduction of a thermostableÂ4â€Î±â€glucanotransferase by codon optimization at Nâ€ŧerminus region. Journal of the Science of Food and Agriculture, 2013, 93, 2683-2690.	3.5	12

#	Article	IF	CITATIONS
37	Characterization of a Galactosynthase Derived from <i>Bacillus circulans</i> βâ€Galactosidase: Facile Synthesis of <scp>D</scp> â€Lacto―and <scp>D</scp> â€Galactoâ€ <i>N</i> â€bioside. ChemBioChem, 2014, 522-526.	15,2.6	12
38	Enzymatic Synthesis of a Selective Inhibitor for α-Glucosidases: α-Acarviosinyl-(1→9)-3-α- <scp>d</scp> -glucopyranosylpropen. Journal of Agricultural and Food Chemistry, 2008, 56, 5324-5330.	5.2	11
39	Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains. Biochemical and Biophysical Research Communications, 2009, 378, 224-229.	2.1	11
40	Transglycosylation of engineered cyclodextrin glucanotransferases as O-glycoligases. Carbohydrate Polymers, 2014, 99, 39-46.	10.2	11
41	Enzymatic synthesis of 3-O-α-maltosyl-l-ascorbate using an engineered cyclodextrin glucanotransferase. Food Chemistry, 2015, 169, 366-371.	8.2	11
42	Rapid enzymatic assay of biogenic amines in Doenjang and Gochujang using amine oxidase. Food Science and Biotechnology, 2013, 22, 1131-1136.	2.6	10
43	Optimizing the preparation conditions and characterization of cross-linked enzyme aggregates of a monoamine oxidase. Food Science and Biotechnology, 2016, 25, 1421-1425.	2.6	9
44	Engineering Thermus Maltogenic Amylase with Improved Thermostability: Probing the Role of the Conserved Calcium Binding Site in Cyclodextrin-degrading Enzymes. Journal of Applied Glycoscience (1999), 2005, 52, 7-13.	0.7	5
45	Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase. Carbohydrate Polymers, 2016, 136, 649-655.	10.2	5
46	Complex formation of a 4-α-glucanotransferase using starch as a biocatalyst for starch modification. Food Science and Biotechnology, 2017, 26, 1659-1666.	2.6	4
47	pH-promoted O-α-glucosylation of flavonoids using an engineered α-glucosidase mutant. Bioorganic Chemistry, 2021, 107, 104581.	4.1	4
48	Enzymatic biosynthesis of a puerarin–cycloamylose inclusion complex by 4-α-glucanotransferase and maltogenic amylase. Biocatalysis and Biotransformation, 2010, 28, 209-214.	2.0	3
49	Affinity purification of 4-α-glucanotransferase through formation of complex with insoluble amylose. Food Science and Biotechnology, 2015, 24, 1811-1816.	2.6	2
50	Construction of an antimyoglobin single hain variable fragment with rapid reaction kinetics. Biotechnology and Applied Biochemistry, 2016, 63, 22-30.	3.1	2
51	Combined Cross-Linked Enzyme Aggregates of Monoamine Oxidase and Putrescine Oxidase as a Bifunctional Biocatalyst for Determination of Biogenic Amines in Foods. Catalysts, 2019, 9, 579.	3.5	2
52	Glycosidases and their Mutants as Useful Tools for Glycoside Synthesis. , 2008, , 226-241.		1
53	Characteristics of Archaeal Maltogenic Amylases. , 2008, , 287-299.		0
54	Development of a colorimetric enzymatic assay method for aromatic biogenic monoamine-producing decarboxylases. Food Science and Biotechnology, 2021, 30, 971-977.	2.6	0

#	Article	IF	CITATIONS
55	Effect of chloride ions on the catalytic properties of human pancreatic α-amylase isozyme produced in Pichia pastoris. Korean Journal of Food Science and Technology, 2016, 48, 341-346.	0.3	0