Alan F Cowman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11388746/publications.pdf

Version: 2024-02-01

245 papers

27,918 citations

90 h-index 155 g-index

246 all docs

246 docs citations

246 times ranked 11873 citing authors

#	Article	IF	Citations
1	Targeting Malaria Virulence and Remodeling Proteins to the Host Erythrocyte. Science, 2004, 306, 1930-1933.	12.6	797
2	Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature, 2000, 403, 906-909.	27.8	786
3	Invasion of Red Blood Cells by Malaria Parasites. Cell, 2006, 124, 755-766.	28.9	772
4	Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell, 1989, 57, 921-930.	28.9	588
5	Malaria: Biology and Disease. Cell, 2016, 167, 610-624.	28.9	576
6	Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles. Cell, 2013, 153, 1120-1133.	28.9	508
7	Isolation and structure of a rhodopsin gene from D. melanogaster. Cell, 1985, 40, 851-858.	28.9	502
8	Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes. Cell, 2008, 134, 48-61.	28.9	450
9	A newly discovered protein export machine in malaria parasites. Nature, 2009, 459, 945-949.	27.8	437
10	Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum. Science, 2003, 299, 705-708.	12.6	425
11	Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum. Cell, 2005, 121, 13-24.	28.9	412
12	Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Molecular and Biochemical Parasitology, 2004, 137, 13-21.	1.1	401
13	Targeted Gene Disruption Shows That Knobs Enable Malaria-Infected Red Cells to Cytoadhere under Physiological Shear Stress. Cell, 1997, 89, 287-296.	28.9	398
14	Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 2006, 7, R12.	9.6	365
15	Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cellular Microbiology, 2009, 11, 506-520.	2.1	355
16	Malaria parasite proteins that remodel the host erythrocyte. Nature Reviews Microbiology, 2009, 7, 341-354.	28.6	340
17	Pyrimethamine–sulfadoxine resistance in Plasmodium falciparum: what next?. Trends in Parasitology, 2001, 17, 582-588.	3.3	329
18	A Conserved Molecular Motor Drives Cell Invasion and Gliding Motility across Malaria Life Cycle Stages and Other Apicomplexan Parasites. Journal of Biological Chemistry, 2006, 281, 5197-5208.	3.4	317

#	Article	IF	Citations
19	Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte. Cell Host and Microbe, 2011, 9, 9-20.	11.0	303
20	Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nature Medicine, 2003, 9, 87-92.	30.7	297
21	An aspartyl protease directs malaria effector proteins to the host cell. Nature, 2010, 463, 627-631.	27.8	289
22	The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal of Cell Biology, 2012, 198, 961-971.	5.2	285
23	Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Molecular Microbiology, 2000, 38, 706-718.	2.5	276
24	Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood, 2002, 99, 1060-1063.	1.4	276
25	Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO Journal, 1998, 17, 3807-3815.	7.8	257
26	Immune sera recognize on erythrocytes a Plasmodium falciparum antigen composed of repeated amino acid sequences. Nature, 1984, 310, 789-792.	27.8	252
27	Molecular Mechanism for Switching of P. falciparum Invasion Pathways into Human Erythrocytes. Science, 2005, 309, 1384-1387.	12.6	247
28	Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLoS Pathogens, 2015, 11, e1004670.	4.7	246
29	A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature, 2006, 439, 1004-1008.	27.8	245
30	Antibodies against Merozoite Surface Protein (Msp)-119 Are a Major Component of the Invasion-Inhibitory Response in Individuals Immune to Malaria. Journal of Experimental Medicine, 2001, 193, 1403-1412.	8. 5	244
31	Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle ofPlasmodium falciparum. Molecular Microbiology, 2005, 57, 405-419.	2.5	243
32	Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors. PLoS Pathogens, 2009, 5, e1000569.	4.7	243
33	The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host and Microbe, 2017, 22, 232-245.	11.0	242
34	Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO Journal, 2003, 22, 1047-1057.	7.8	235
35	Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Tropica, 2005, 94, 181-190.	2.0	232
36	Reticulocyte-binding protein homologue 5 – An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. International Journal for Parasitology, 2009, 39, 371-380.	3.1	222

#	Article	IF	CITATIONS
37	Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites. Journal of Biological Chemistry, 2010, 285, 14815-14822.	3.4	216
38	Identification and Prioritization of Merozoite Antigens as Targets of Protective Human Immunity to <i>Plasmodium falciparum</i> Malaria for Vaccine and Biomarker Development. Journal of Immunology, 2013, 191, 795-809.	0.8	213
39	Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum. PLoS Biology, 2009, 7, e1000084.	5.6	211
40	Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4796-4801.	7.1	209
41	That Was Then But This Is Now: Malaria Research in the Time of an Eradication Agenda. Science, 2010, 328, 862-866.	12.6	209
42	Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature, 1983, 306, 751-756.	27.8	195
43	Targets of antibodies against Plasmodium falciparum–infected erythrocytes in malaria immunity. Journal of Clinical Investigation, 2012, 122, 3227-3238.	8.2	187
44	Alveolins, a New Family of Cortical Proteins that Define the Protist Infrakingdom Alveolata. Molecular Biology and Evolution, 2008, 25, 1219-1230.	8.9	184
45	Association between Naturally Acquired Antibodies to Erythrocyteâ€Binding Antigens of <i>Plasmodium falciparum</i> and Protection from Malaria and Highâ€Density Parasitemia. Clinical Infectious Diseases, 2010, 51, e50-e60.	5.8	184
46	Complement receptor 1 is the host erythrocyte receptor for <i>Plasmodium falciparum</i> PfRh4 invasion ligand. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17327-17332.	7.1	182
47	Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Research, 2009, 37, 3788-3798.	14.5	177
48	Conserved sequences flank variable tandem repeats in two \hat{l}_{\pm} -antigen genes of Plasmodium falciparum. Cell, 1985, 40, 775-783.	28.9	171
49	A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2003, 47, 297-301.	3.2	171
50	Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host and Microbe, 2016, 20, 60-71.	11.0	170
51	Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. Journal of Clinical Investigation, 2008, 118, 342-351.	8.2	166
52	A Novel Erythrocyte Binding Antigen-175 Paralogue fromPlasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. Journal of Biological Chemistry, 2003, 278, 14480-14486.	3.4	165
53	Preerythrocytic, live-attenuated <i>Plasmodium falciparum</i> vaccine candidates by design. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13004-13009.	7.1	164
54	Role of the <i>Plasmodium </i> Export Element in Trafficking Parasite Proteins to the Infected Erythrocyte. Traffic, 2009, 10, 285-299.	2.7	164

#	Article	IF	CITATIONS
55	Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Molecular Microbiology, 2004, 52, 159-168.	2.5	163
56	Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. International Journal for Parasitology, 2002, 32, 81-89.	3.1	161
57	Transfection of the Human Malaria Parasite <i>Plasmodium falciparum<i>., 2004, 270, 263-276.</i></i>		158
58	Genetic Diversity in Plasmodium falciparum. Advances in Parasitology, 1990, 29, 75-149.	3.2	157
59	Independent Translocation of Two Micronemal Proteins in Developing Plasmodium falciparum Merozoites. Infection and Immunity, 2002, 70, 5751-5758.	2.2	156
60	Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nature Medicine, 2000, 6, 91-95.	30.7	154
61	Regulation of apicomplexan actin-based motility. Nature Reviews Microbiology, 2006, 4, 621-628.	28.6	151
62	A Subset of Plasmodium falciparum SERA Genes Are Expressed and Appear to Play an Important Role in the Erythrocytic Cycle. Journal of Biological Chemistry, 2002, 277, 47524-47532.	3.4	149
63	Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends in Parasitology, 2012, 28, 23-30.	3.3	148
64	Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Molecular Microbiology, 2004, 55, 162-174.	2.5	145
65	An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye. Cell, 1986, 44, 705-710.	28.9	140
66	Selective Inhibition of a Two-step Egress of Malaria Parasites from the Host Erythrocyte. Journal of Biological Chemistry, 2003, 278, 37658-37663.	3.4	138
67	Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum–infected erythrocyte surface. Blood, 2007, 109, 1289-1297.	1.4	138
68	The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes. Blood, 2006, 108, 370-378.	1.4	135
69	A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Molecular Microbiology, 2001, 41, 47-58.	2.5	133
70	Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites. Infection and Immunity, 2011, 79, 1107-1117.	2.2	132
71	An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum. PLoS Pathogens, 2011, 7, e1002199.	4.7	130
72	Biosynthesis, Localization, and Macromolecular Arrangement of the Plasmodium falciparum Translocon of Exported Proteins (PTEX). Journal of Biological Chemistry, 2012, 287, 7871-7884.	3.4	130

#	Article	IF	CITATIONS
73	Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2017, 2, 17031.	13.3	128
74	Role of Plasmepsin V in Export of Diverse Protein Families from the <i>Plasmodium falciparum</i> Exportome. Traffic, 2013, 14, 532-550.	2.7	127
75	The mode of action and the mechanism of resistance to antimalarial drugs. Acta Tropica, 1994, 56, 157-171.	2.0	124
76	Trafficking of the major virulence factor to the surface of transfected P falciparum–infected erythrocytes. Blood, 2005, 105, 4078-4087.	1.4	124
77	Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite. PLoS Pathogens, 2010, 6, e1000941.	4.7	124
78	PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division. Cell Host and Microbe, 2012, 11, 7-18.	11.0	124
79	Identification of Proteins from Plasmodium falciparum That Are Homologous to Reticulocyte Binding Proteins inPlasmodium vivax. Infection and Immunity, 2001, 69, 1084-1092.	2.2	123
80	Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of Malaria Parasites. PLoS Biology, 2014, 12, e1001897.	5.6	121
81	Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 2005, 171, 587-592.	5.2	120
82	Invasion by P. falciparum Merozoites Suggests a Hierarchy of Molecular Interactions. PLoS Pathogens, 2005, 1, e37.	4.7	119
83	Molecular and functional aspects of parasite invasion. Trends in Parasitology, 2004, 20, 567-574.	3.3	111
84	The Signal Sequence of Exported Protein-1 Directs the Green Fluorescent Protein to the Parasitophorous Vacuole of Transfected Malaria Parasites. Journal of Biological Chemistry, 2003, 278, 6532-6542.	3.4	110
85	A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO Journal, 2002, 21, 1231-1239.	7.8	106
86	VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2006, 148, 117-124.	1.1	105
87	A Malaria Parasite Formin Regulates Actin Polymerization and Localizes to the Parasite-Erythrocyte Moving Junction during Invasion. Cell Host and Microbe, 2008, 3, 188-198.	11.0	105
88	A Novel Family of Apicomplexan Glideosome-associated Proteins with an Inner Membrane-anchoring Role. Journal of Biological Chemistry, 2009, 284, 25353-25363.	3.4	105
89	Genesis of and Trafficking to the Maurer's Clefts of Plasmodium falciparum -Infected Erythrocytes. Molecular and Cellular Biology, 2006, 26, 4074-4085.	2.3	104
90	<i>Plasmodium</i> Nesting: Remaking the Erythrocyte from the Inside Out. Annual Review of Microbiology, 2013, 67, 243-269.	7.3	99

#	Article	IF	Citations
91	Thioredoxin Reductase Is Essential for the Survival ofPlasmodium falciparum Erythrocytic Stages. Journal of Biological Chemistry, 2002, 277, 25970-25975.	3.4	97
92	Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Molecular and Biochemical Parasitology, 2006, 150, 118-121.	1.1	97
93	Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter. PLoS Pathogens, 2011, 7, e1001292.	4.7	95
94	The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of <i>Plasmodium falciparum ⟨i⟩â€infected erythrocytes. Molecular Microbiology, 2008, 68, 1300-1314.</i>	2.5	94
95	Conditional expression of apical membrane antigen 1 in <scp> <i>P</i> </scp> <i>lasmodium falciparum</i> shows it is required for erythrocyte invasion by merozoites. Cellular Microbiology, 2014, 16, 642-656.	2.1	94
96	Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell Host and Microbe, 2020, 27, 642-658.e12.	11.0	94
97	Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nature Structural and Molecular Biology, 2015, 22, 590-596.	8.2	93
98	Inhibition of Dendritic Cell Maturation by Malaria Is Dose Dependent and Does Not Require Plasmodium falciparum Erythrocyte Membrane Protein 1. Infection and Immunity, 2007, 75, 3621-3632.	2.2	90
99	Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage <i>Plasmodium falciparum</i> Infection. Journal of Immunology, 2016, 196, 1239-1248.	0.8	90
100	Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 2005, 118, 5603-5613.	2.0	88
101	Functional analysis of proteins involved inPlasmodium falciparummerozoite invasion of red blood cells. FEBS Letters, 2000, 476, 84-88.	2.8	87
102	Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex. PLoS Pathogens, 2011, 7, e1002222.	4.7	85
103	Evidence That the Erythrocyte Invasion Ligand PfRh2 is a Target of Protective Immunity against <i>Plasmodium falciparum</i> Malaria. Journal of Immunology, 2010, 185, 6157-6167.	0.8	84
104	Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and Plasmodia. Molecular and Biochemical Parasitology, 1995, 74, 129-141.	1.1	83
105	Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nature Reviews Microbiology, 2010, 8, 617-621.	28.6	82
106	Electron tomography of <i>Plasmodium falciparum </i> merozoites reveals core cellular events that underpin erythrocyte invasion. Cellular Microbiology, 2013, 15, 1457-1472.	2.1	82
107	Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum. Journal of Biological Chemistry, 2013, 288, 36338-36350.	3.4	79
108	Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes. Nature Communications, 2013, 4, 1415.	12.8	79

#	Article	IF	CITATIONS
109	The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. Journal of Cell Biology, 2003, 162, 317-327.	5.2	78
110	<i>Plasmodium falciparum</i> centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cellular Microbiology, 2012, 14, 1391-1401.	2.1	74
111	Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature, 2019, 565, 118-121.	27.8	74
112	Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoeliiAdhesive Proteins, Which Is Transcribed but Not Translated. Infection and Immunity, 2001, 69, 3635-3645.	2.2	73
113	Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype. Molecular Microbiology, 2002, 43, 1285-1293.	2.5	72
114	Heterologous expression of active thymidylate synthase-dihydrofolate reductase from Plasmodium falciparum. Biochemistry, 1990, 29, 10779-10785.	2.5	71
115	Mutations in the pfmdr1, dhfr and dhps genes of Plasmodium falciparum are associated with in-vivo drug resistance in West Papua, Indonesia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2001, 95, 43-49.	1.8	71
116	Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. International Journal for Parasitology, 2010, 40, 109-121.	3.1	71
117	Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum. PLoS Pathogens, 2009, 5, e1000328.	4.7	70
118	Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. Journal of Biological Chemistry, 2016, 291, 7703-7715.	3.4	70
119	Discovery of GAMA, a Plasmodium falciparum Merozoite Micronemal Protein, as a Novel Blood-Stage Vaccine Candidate Antigen. Infection and Immunity, 2011, 79, 4523-4532.	2.2	69
120	Spatial Localisation of Actin Filaments across Developmental Stages of the Malaria Parasite. PLoS ONE, 2012, 7, e32188.	2.5	69
121	Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood, 2014, 124, 3459-3468.	1.4	68
122	Correct Promoter Control Is Needed for Trafficking of the Ring-Infected Erythrocyte Surface Antigen to the Host Cytosol in Transfected Malaria Parasites. Infection and Immunity, 2004, 72, 6095-6105.	2.2	66
123	The chromosomal organization of the Plasmodium falciparum var gene family is conserved. Molecular and Biochemical Parasitology, 1997, 87, 49-60.	1.1	65
124	Antibodies to Reticulocyte Binding Protein-Like Homologue 4 Inhibit Invasion of <i>Plasmodium falciparum</i> into Human Erythrocytes. Infection and Immunity, 2009, 77, 2427-2435.	2,2	65
125	Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications, 2016, 7, 10470.	12.8	65
126	Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria. PLoS ONE, 2012, 7, e51023.	2.5	65

#	Article	IF	Citations
127	Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. ELife, 2017, 6, .	6.0	64
128	Multiple var gene transcripts are expressed in Plasmodium falciparum infected erythrocytes selected for adhesion. Molecular and Biochemical Parasitology, 2001, 114, 227-237.	1.1	62
129	Erythrocyte-Binding Antigens of <i>Plasmodium falciparum</i> Are Targets of Human Inhibitory Antibodies and Function To Evade Naturally Acquired Immunity. Journal of Immunology, 2013, 191, 785-794.	0.8	62
130	Delivery of the Malaria Virulence Protein PfEMP1 to the Erythrocyte Surface Requires Cholesterol-Rich Domains. Eukaryotic Cell, 2006, 5, 849-860.	3.4	60
131	Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nature Microbiology, 2018, 3, 1010-1022.	13.3	59
132	A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria ParasitePlasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 31995-32003.	3.4	58
133	An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2001, 116, 55-63.	1.1	57
134	Evolution of malaria parasite plastid targeting sequences. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4781-4785.	7.1	57
135	Polymorphisms in Erythrocyte Binding Antigens 140 and 181 Affect Function and Binding but Not Receptor Specificity in <i>Plasmodium falciparum</i>). Infection and Immunity, 2009, 77, 1689-1699.	2.2	57
136	Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. ELife, 2017 , 6 , .	6.0	57
137	Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion byPlasmodium falciparum. Cellular Microbiology, 2009, 11, 1671-1687.	2.1	56
138	ANALYSIS OF PFCRT, PFMDR1, DHFR, AND DHPS MUTATIONS AND DRUG SENSITIVITIES IN PLASMODIUM FALCIPARUM ISOLATES FROM PATIENTS IN VIETNAM BEFORE AND AFTER TREATMENT WITH ARTEMISININ. American Journal of Tropical Medicine and Hygiene, 2003, 68, 350-356.	1.4	56
139	Current status of the Plasmodium falciparum genome project. Molecular and Biochemical Parasitology, 1996, 79, 1-12.	1.1	55
140	Truncation of merozoite surface protein 3 disrupts its trafficking and that of acidic-basic repeat protein to the surface of Plasmodium falciparum merozoites. Molecular Microbiology, 2002, 43, 1401-1411.	2.5	54
141	Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. ELife, 2014, 3, .	6.0	53
142	Plasmodium falciparum Erythrocyte Membrane Protein-1 Specifically Suppresses Early Production of Host Interferon- \hat{I}^3 . Cell Host and Microbe, 2007, 2, 130-138.	11.0	52
143	Disruption of the Plasmodium falciparum liver-stage antigen-1 locus causes a differentiation defect in late liver-stage parasites. Cellular Microbiology, 2011, 13, 1250-1260.	2.1	51
144	The Plasmodium falciparum Erythrocyte Invasion Ligand Pfrh4 as a Target of Functional and Protective Human Antibodies against Malaria. PLoS ONE, 2012, 7, e45253.	2.5	51

#	Article	IF	Citations
145	Vaccination with Conserved Regions of Erythrocyte-Binding Antigens Induces Neutralizing Antibodies against Multiple Strains of Plasmodium falciparum. PLoS ONE, 2013, 8, e72504.	2.5	51
146	The antimalarial drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1997, 88, 215-224.	1.1	50
147	Biochemical and Functional Analysis of Two Plasmodium falciparum Blood-Stage 6-Cys Proteins: P12 and P41. PLoS ONE, 2012, 7, e41937.	2.5	49
148	The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resistance Updates, 1999, 2, 15-19.	14.4	48
149	Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood, 2011, 118, 1923-1933.	1.4	48
150	Trafficking determinants for PfEMP3 export and assembly under the Plasmodium falciparum-infected red blood cell membrane. Molecular Microbiology, 2005, 58, 1039-1053.	2.5	47
151	Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. Current Opinion in Microbiology, 2006, 9, 381-387.	5.1	47
152	Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation. Molecular Microbiology, 2006, 62, 72-83.	2.5	47
153	Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. ELife, 2017, 6, .	6.0	47
154	A Genome-wide Chromatin-associated Nuclear Peroxiredoxin from the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2011, 286, 11746-11755.	3.4	46
155	Transition State Mimetics of the <i>Plasmodium</i> Export Element Are Potent Inhibitors of Plasmepsin V from <i>P. falciparum</i> and <i>P. vivax</i> Journal of Medicinal Chemistry, 2014, 57, 7644-7662.	6.4	46
156	The Merozoite Surface Protein 1 Complex Is a Platform for Binding to Human Erythrocytes by Plasmodium falciparum. Journal of Biological Chemistry, 2014, 289, 25655-25669.	3.4	45
157	Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains. PLoS Pathogens, 2011, 7, e1002075.	4.7	43
158	Cryo-EM structure of an essential Plasmodium vivax invasion complex. Nature, 2018, 559, 135-139.	27.8	43
159	Plasmodium falciparum:Amplification and Overexpression ofpfmdr1Is Not Necessary for Increased Mefloquine Resistance. Experimental Parasitology, 1996, 83, 295-303.	1.2	41
160	Function of the plasmodium export element can be blocked by green fluorescent protein. Molecular and Biochemical Parasitology, 2005, 142, 258-262.	1.1	41
161	Association of antibodies to Plasmodium falciparum reticulocyte binding protein homolog 5 with protection from clinical malaria. Frontiers in Microbiology, $2014, 5, 314$.	3.5	41
162	Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes. PLoS Pathogens, 2015, 11, e1005343.	4.7	41

#	Article	IF	Citations
163	Nucleotide binding properties of a P-glycoprotein homologue from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1993, 58, 269-276.	1.1	40
164	Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Veterinary Parasitology, 2005, 132, 273-295.	1.8	40
165	Protein Kinase A Is Essential for Invasion of Plasmodium falciparum into Human Erythrocytes. MBio, 2019, 10, .	4.1	40
166	Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum. Molecular Microbiology, 2007, 66, 139-150.	2.5	39
167	Merozoite Antigens of Plasmodium falciparum Elicit Strain-Transcending Opsonizing Immunity. Infection and Immunity, 2016, 84, 2175-2184.	2.2	39
168	Spatial dissection of the <i>cis</i> ae•and <i>trans</i> eColgi compartments in the malaria parasite <i>Plasmodium falciparum</i> eci>lasmodium falciparumeci>lasmodium falciparumeci>lasmodium<	2.5	38
169	4D analysis of malaria parasite invasion offers insights into erythrocyte membrane remodeling and parasitophorous vacuole formation. Nature Communications, 2021, 12, 3620.	12.8	38
170	Re-assessing the locations of components of the classical vesicle-mediated trafficking machinery in transfected Plasmodium falciparum. International Journal for Parasitology, 2007, 37, 1127-1141.	3.1	37
171	Analysis of structure and function of the giant protein Pf332 in <i>Plasmodium falciparum</i> Molecular Microbiology, 2009, 71, 48-65.	2.5	36
172	Plasmodium falciparum PF10_0164 (ETRAMP10.3) Is an Essential Parasitophorous Vacuole and Exported Protein in Blood Stages. Eukaryotic Cell, 2010, 9, 784-794.	3.4	36
173	<i>Plasmodium falciparum</i> possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. Journal of Cell Science, 2008, 121, 2123-2129.	2.0	35
174	Gene deletion from Plasmodium falciparum using FLP and Cre recombinases: Implications for applied site-specific recombination. International Journal for Parasitology, 2011, 41, 117-123.	3.1	35
175	Characterization of the gene family encoding a host-protective antigen of the tapeworm Taenia ovis. Molecular and Biochemical Parasitology, 1995, 73, 123-131.	1.1	34
176	Identification and Disruption of the Gene Encoding the Third Member of the Low-Molecular-Mass Rhoptry Complex in Plasmodium falciparum. Infection and Immunity, 2002, 70, 5236-5245.	2.2	34
177	Insights into Duffy Binding-like Domains through the Crystal Structure and Function of the Merozoite Surface Protein MSPDBL2 from Plasmodium falciparum. Journal of Biological Chemistry, 2012, 287, 32922-32939.	3.4	34
178	Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes. Cellular Microbiology, 2019, 21, e13030.	2.1	34
179	Chromosomal rearrangements and point mutations in the DHFR-TS gene of Plasmodium chabaudi under antifolate selection. Molecular and Biochemical Parasitology, 1990, 42, 21-29.	1.1	33
180	Plasmodium falciparum Merozoite Surface Protein 6 Is a Dimorphic Antigen. Infection and Immunity, 2004, 72, 2321-2328.	2.2	33

#	Article	IF	Citations
181	Functional Analysis of Plasmodium falciparum Apical Membrane Antigen 1 Utilizing Interspecies Domains. Infection and Immunity, 2005, 73, 2444-2451.	2.2	33
182	Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. International Journal for Parasitology, 2014, 44, 853-857.	3.1	33
183	Molecular Cloning and Sequence of two Novel P-type Adenosinetriphosphatases from Plasmodium falciparum. FEBS Journal, 1995, 227, 214-225.	0.2	32
184	ThePlasmodium falciparumGenome a Blueprint for Erythrocyte Invasion. Science, 2002, 298, 126-128.	12.6	32
185	Characterization of a Conserved Rhoptry-Associated Leucine Zipper-Like Protein in the Malaria Parasite <i>Plasmodium falciparum</i> . Infection and Immunity, 2008, 76, 879-887.	2.2	32
186	Characterisation of two novel proteins from the asexual stage of Plasmodium falciparum, H101 and H103. Molecular and Biochemical Parasitology, 2005, 139, 141-151.	1.1	31
187	Antibodies against a Plasmodium falciparum antigen PfMSPDBL1 inhibit merozoite invasion into human erythrocytes. Vaccine, 2012, 30, 1972-1980.	3.8	31
188	Using Mutagenesis and Structural Biology to Map the Binding Site for the Plasmodium falciparum Merozoite Protein PfRh4 on the Human Immune Adherence Receptor. Journal of Biological Chemistry, 2014, 289, 450-463.	3.4	30
189	Efficient Measurement of Opsonising Antibodies to Plasmodium falciparum Merozoites. PLoS ONE, 2012, 7, e51692.	2.5	30
190	Antibodies to the <i>Plasmodium falciparum </i> Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria. Journal of Infectious Diseases, 2015, 212, 406-415.	4.0	29
191	Functional analysis of Plasmodium falciparum merozoite antigens: implications for erythrocyte invasion and vaccine development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 25-33.	4.0	28
192	Vaccines to Accelerate Malaria Elimination and Eventual Eradication. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025627.	6.2	28
193	Characterisation of the merozoite surface protein-2 promoter using stable and transient transfection in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2003, 129, 147-156.	1.1	27
194	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	12.8	27
195	Food vacuole targeting and trafficking of falcipain-2, an important cysteine protease of human malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology, 2007, 156, 12-23.	1.1	26
196	Cooperativity between <i>Plasmodium falciparum</i> adhesive proteins for invasion into erythrocytes. Molecular Microbiology, 2009, 72, 578-589.	2.5	26
197	Recruitment of Human C1 Esterase Inhibitor Controls Complement Activation on Blood Stage <i>Plasmodium falciparum</i> Merozoites. Journal of Immunology, 2017, 198, 4728-4737.	0.8	26
198	Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. European Journal of Medicinal Chemistry, 2018, 154, 182-198.	5.5	26

#	Article	IF	CITATIONS
199	A YAC contig map of Plasmodium falciparum chromosome 4: characterization of a DNA amplification between two recently separated isolates. Genomics, 1995, 26, 192-198.	2.9	25
200	Lack of Evidence from Studies of Soluble Protein Fragments that Knops Blood Group Polymorphisms in Complement Receptor-Type 1 Are Driven by Malaria. PLoS ONE, 2012, 7, e34820.	2.5	25
201	Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Reports, 2019, 29, 3796-3806.e4.	6.4	25
202	Similarities and differences between the multidrug resistance phenotype of mammalian tumor cells and chloroquine resistance in Plasmodium falciparum. Experimental Parasitology, 1991, 73, 233-240.	1.2	24
203	Contrasting Patterns of Serologic and Functional Antibody Dynamics to Plasmodium falciparum Antigens in a Kenyan Birth Cohort. Vaccine Journal, 2016, 23, 104-116.	3.1	24
204	Investigation of the Plasmodium falciparum Food Vacuole through Inducible Expression of the Chloroquine Resistance Transporter (PfCRT). PLoS ONE, 2012, 7, e38781.	2.5	24
205	Cloning and sequence analysis of a novel member of the ATP-binding cassette (ABC) protein gene family from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1996, 81, 41-51.	1.1	23
206	Plasmodium falciparum: Gelatin Enrichment Selects for Parasites with Full-Length Chromosome 2. Implications for Cytoadhesion Assays. Experimental Parasitology, 2001, 97, 115-118.	1.2	23
207	Mechanisms of drug resistance in malaria. Australian and New Zealand Journal of Medicine, 1995, 25, 837-844.	0.5	22
208	Functional analysis of drug resistance in Plasmodium falciparum in the post-genomic era. International Journal for Parasitology, 2001, 31, 871-878.	3.1	22
209	Functional genomics: identifying drug targets for parasitic diseases. Trends in Parasitology, 2003, 19, 538-543.	3.3	21
210	A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Scientific Reports, 2019, 9, 10292.	3.3	20
211	Has the time come for us to complement our malaria parasites?. Trends in Parasitology, 2011, 27, 1-2.	3.3	19
212	Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. MSphere, 2018, 3, .	2.9	18
213	Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Scientific Reports, 2019, 9, 4674.	3.3	17
214	Plasmodium falciparum: The calmodulin gene is not amplified or overexpressed in chloroquine resistant or sensitive isolates. Experimental Parasitology, 1991, 73, 269-275.	1.2	16
215	Plasmodium falciparum:Chloroquine Selection of a Cloned Line and DNA Rearrangements. Experimental Parasitology, 1996, 83, 283-294.	1.2	16
216	Localization-based imaging of malarial antigens during red cell entry reaffirms role for AMA1 but not MTRAP in invasion. Journal of Cell Science, 2016, 129, 228-42.	2.0	16

#	Article	IF	Citations
217	The effect of N-methylation on transition state mimetic inhibitors of the <i>Plasmodium</i> protease, plasmepsin V. MedChemComm, 2015, 6, 437-443.	3.4	16
218	The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum. MBio, 2019, 10, .	4.1	16
219	Plasmodium falciparum virulence determinants unveiled. Genome Biology, 2002, 3, reviews1031.1.	9.6	15
220	Pyrimethamine–sulfadoxine resistance in Plasmodium falciparum: what next?. Trends in Parasitology, 2001, 17, 570-571.	3.3	14
221	<scp><i>P</i></scp> <i>lasmodium falciparum</i> is dependent on <i>dependent on one of the complex of the co</i>	2.5	14
222	Exploration of the P 3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorganic and Medicinal Chemistry, 2016, 24, 1993-2010.	3.0	14
223	A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 31995-32003.	3.4	13
224	The <i>Plasmodium falciparum</i> parasitophorous vacuole protein <scp>P113</scp> interacts with the parasite protein export machinery and maintains normal vacuole architecture. Molecular Microbiology, 2022, 117, 1245-1262.	2.5	13
225	Characterization of Inhibitors and Monoclonal Antibodies That Modulate the Interaction between Plasmodium falciparum Adhesin PfRh4 with Its Erythrocyte Receptor Complement Receptor 1. Journal of Biological Chemistry, 2015, 290, 25307-25321.	3.4	12
226	A bioreactor system for the manufacture of a genetically modified Plasmodium falciparum blood stage malaria cell bank for use in a clinical trial. Malaria Journal, 2018, 17, 283.	2.3	12
227	Revealing a Parasite's Invasive Trick. Science, 2011, 333, 410-411.	12.6	11
228	Different Regions of <i>Plasmodium falciparum </i> Erythrocyte-Binding Antigen 175 Induce Antibody Responses to Infection of Varied Efficacy. Journal of Infectious Diseases, 2016, 214, 96-104.	4.0	11
229	Targeted disruption of maebl in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2005, 141, 113-117.	1.1	9
230	Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax. Structure, 2022, 30, 947-961.e6.	3.3	9
231	Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic <i>P. falciparum</i> malaria. Molecular Systems Biology, 2022, 18, e10824.	7.2	9
232	Phosphorylation of a P-glycoprotein homologue in Plasmodium falciparum. Molecular and Biochemical Parasitology, 1993, 62, 293-302.	1.1	8
233	Double cross-over gene replacement within the sec 7 domain of a GDP–GTP exchange factor from Plasmodium falciparum allows the generation of a transgenic brefeldin A-resistant parasite line. Molecular and Biochemical Parasitology, 2004, 138, 51-55.	1.1	8
234	High-dimensional mass cytometry identifies T cell and B cell signatures predicting reduced risk of Plasmodium vivax malaria. JCI Insight, 2021, 6, .	5.0	6

#	Article	IF	CITATIONS
235	Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Medicine, 2021, 19, 293.	5.5	6
236	An old enemy, a new battle plan. EMBO Reports, 2001, 2, 77-79.	4.5	5
237	RhopH2 and RhopH3 export enables assembly of the RhopH complex on P. falciparum-infected erythrocyte membranes. Communications Biology, 2022, 5, 333.	4.4	5
238	Genetic Manipulation of Plasmodium falciparum. , 0, , 50-67.		4
239	A Tail of Division. Science, 2011, 331, 409-410.	12.6	3
240	YAC contigs and restriction maps of chromosomes 4 and 5 from the cloned line 3D7 of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1999, 102, 197-204.	1.1	2
241	Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 188-200.	3.4	2
242	Molecular Approaches to Malaria 2000. Drug Resistance Updates, 2000, 3, 74-76.	14.4	0
243	Functional analysis of the Plasmodium falciparum genome using transfection. Methods in Microbiology, 2002, 33, 383-396.	0.8	0
244	Vaccine Development., 2016,, 509-525.		0
245	Chromosomal Size Variations in Plasmodium falciparum. , 1992, , 197-208.		O