Dae Yang Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11387894/publications.pdf

Version: 2024-02-01

23 papers 3,057 citations

331670
21
h-index

610901 24 g-index

26 all docs

 $\begin{array}{c} 26 \\ \\ \text{docs citations} \end{array}$

26 times ranked 2547 citing authors

#	Article	IF	CITATIONS
1	Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2018, 8, 1800035.	19.5	410
2	Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. Nano Letters, 2017, 17, 3013-3020.	9.1	281
3	Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. Journal of Power Sources, 2018, 375, 93-101.	7.8	267
4	Solutionâ€Processable Glass Lilâ€Li ₄ SnS ₄ Superionic Conductors for Allâ€Solidâ€State Liâ€Ion Batteries. Advanced Materials, 2016, 28, 1874-1883.	21.0	265
5	Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Letters, 2015, 15, 3317-3323.	9.1	233
6	Issues and Challenges for Bulkâ€Type Allâ€Solidâ€State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes. Israel Journal of Chemistry, 2015, 55, 472-485.	2.3	216
7	Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. Journal of Power Sources, 2015, 274, 1254-1262.	7.8	188
8	Comparative Study of TiS 2 /Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li 3 PS 4 and Li 10 GeP 2 S 12 Solid Electrolytes. Electrochimica Acta, 2014, 146, 395-402.	5.2	187
9	Li ₃ BO ₃ â€"Li ₂ CO ₃ : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. Chemistry of Materials, 2018, 30, 8190-8200.	6.7	162
10	Slurryâ€Fabricable Li ⁺ â€Conductive Polymeric Binders for Practical Allâ€Solidâ€State Lithiumâ€Ion Batteries Enabled by Solvate Ionic Liquids. Advanced Energy Materials, 2019, 9, 1802927.	19.5	135
11	Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulkâ€Type Allâ€Solidâ€State Lithium″on Batteries. Advanced Energy Materials, 2015, 5, 1500865.	19.5	134
12	Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20771-20779.	10.3	123
13	All-solid-state lithium-ion batteries with TiS ₂ nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A, 2016, 4, 10329-10335.	10.3	88
14	Coatable Li ₄ SnS ₄ Solid Electrolytes Prepared from Aqueous Solutions for Allâ€Solidâ€State Lithiumâ€ion Batteries. ChemSusChem, 2017, 10, 2605-2611.	6.8	84
15	Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells. Journal of Materials Chemistry A, 2018, 6, 14867-14875.	10.3	44
16	Digital Twinâ€Driven Allâ€Solidâ€State Battery: Unraveling the Physical and Electrochemical Behaviors. Advanced Energy Materials, 2020, 10, 2001563.	19.5	42
17	Operando Differential Electrochemical Pressiometry for Probing Electrochemoâ€Mechanics in Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2020, 30, 2002535.	14.9	41
18	Tailoring Slurries Using Cosolvents and Li Salt Targeting Practical Allâ€Solidâ€State Batteries Employing Sulfide Solid Electrolytes. Advanced Energy Materials, 2021, 11, 2003766.	19.5	41

#	Article	IF	CITATIONS
19	Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for Allâ€Solidâ€State Batteries. Advanced Materials, 2022, 34, e2200083.	21.0	36
20	Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability. Materials Today, 2022, 53, 7-15.	14.2	34
21	Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. Energy Storage Materials, 2022, 49, 219-226.	18.0	31
22	Wetâ€Chemical Tuning of Li 3â° x PS 4 (0≠x â‰0.3) Enabled by Dual Solvents for Allâ€Solidâ€State Lithiumâ Batteries. ChemSusChem, 2020, 13, 146-151.	€lon 6.8	12
23	Lithium-Ion Batteries: Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries (Adv. Energy Mater.) Tj ETQq1 I	l 09.8 43	- 14 2 gBT /Ove