Peter Cooke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11382551/publications.pdf

Version: 2024-02-01

623734 677142 1,383 23 14 22 h-index citations g-index papers 23 23 23 1667 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Colonization and survival capacities underlying the multifaceted life of Rhodococcus sp. PBTS1 and PBTS2. Plant Pathology, 2021, 70, 567-583.	2.4	3
2	Evidence for nonpathogenic relationships of <i> Alternaria </i> > section <i> Undifilum </i> > endophytes within three host locoweed plant species. Botany, 2018, 96, 187-200.	1.0	14
3	Comment on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management― ELife, 2018, 7, .	6.0	9
4	1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters. Energy Conversion and Management, 2017, 132, 213-220.	9.2	35
5	First Report of Rhodococcus Isolates Causing Pistachio Bushy Top Syndrome on â€~UCB-1' Rootstock in California and Arizona. Plant Disease, 2015, 99, 1468-1476.	1.4	34
6	Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 2014, 115, 720-726.	6.4	151
7	Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 2014, 133, 73-81.	6.4	89
8	Microwave-mediated non-catalytic transesterification of algal biomass under supercritical ethanol conditions. Journal of Supercritical Fluids, 2013, 79, 67-72.	3.2	28
9	Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions. Bioresource Technology, 2013, 137, 278-285.	9.6	42
10	In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresource Technology, 2013, 139, 308-315.	9.6	79
11	Detection and localization of the endophyte <i>Undifilum oxytropis</i> i>in locoweed tissues. Botany, 2012, 90, 1229-1236.	1.0	15
12	Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chemistry, 2012, 14, 809.	9.0	64
13	Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel, 2012, 97, 822-831.	6.4	171
14	Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 2011, 102, 118-122.	9.6	321
15	Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 2011, 102, 1399-1405.	9.6	178
16	Importance of Proteinâ€Rich Components in Emulsifying Properties of Corn Fiber Gum. Cereal Chemistry, 2010, 87, 89-94.	2.2	34
17	Synbiotic Matrices Derived from Plant Oligosaccharides and Polysaccharides. ACS Symposium Series, 2008, , 69-77.	0.5	4
18	Topographical imaging as a means of monitoring biodegradation of poly(hydroxyalkanoate) films. Journal of Polymers and the Environment, 2007, 15, 179-187.	5.0	7

#	Article	IF	CITATIONS
19	Nonthermal Inactivation of E. coli in Fruit Juices Using Radio Frequency Electric Fields. ACS Symposium Series, 2006, , 121-139.	0.5	5
20	Destabilization of collagen in hide and leather by anionic surfactants. II. Calorimetry of the reaction of collagen with sulfates. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 805-813.	2.1	11
21	Thermal Stabilization of Collagen Fibers by Calcification. Connective Tissue Research, 1996, 33, 275-282.	2.3	81
22	Glutaraldehyde Cross-Linking of the Sheath-Core Structures in Collagen Fibrils of Skin. Annals of the New York Academy of Sciences, 1990, 580, 448-450.	3.8	3
23	Ectopic growth of the Chaetothyriales fungal symbiont on Ipomoea carnea. Botany, 0, , 1-9.	1.0	5