List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1138209/publications.pdf Version: 2024-02-01

SHIIN WATANARE

#	Article	IF	CITATIONS
1	2D coherent charge transport in highly orderedÂconducting polymers doped by solid stateÂdiffusion. Nature Materials, 2016, 15, 896-902.	27.5	346
2	Patternable Solutionâ€Crystallized Organic Transistors with High Charge Carrier Mobility. Advanced Materials, 2011, 23, 1626-1629.	21.0	337
3	Organic field-effect transistors using single crystals. Science and Technology of Advanced Materials, 2009, 10, 024314.	6.1	332
4	Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95.	6.1	322
5	Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives. Applied Physics Express, 2009, 2, 111501.	2.4	254
6	Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Science Advances, 2018, 4, eaao5758.	10.3	237
7	Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature, 2019, 572, 634-638.	27.8	208
8	Highâ€Performance Solutionâ€Processable Nâ€6haped Organic Semiconducting Materials with Stabilized Crystal Phase. Advanced Materials, 2014, 26, 4546-4551.	21.0	206
9	Vâ€Shaped Organic Semiconductors With Solution Processability, High Mobility, and High Thermal Durability. Advanced Materials, 2013, 25, 6392-6397.	21.0	196
10	Doping of Organic Semiconductors: Impact of Dopant Strength and Electronic Coupling. Angewandte Chemie - International Edition, 2013, 52, 7751-7755.	13.8	186
11	On the Extraction of Charge Carrier Mobility in Highâ€Mobility Organic Transistors. Advanced Materials, 2016, 28, 151-155.	21.0	178
12	Polaron spin current transport in organic semiconductors. Nature Physics, 2014, 10, 308-313.	16.7	170
13	Coherent singlet fission activated by symmetry breaking. Nature Chemistry, 2017, 9, 983-989.	13.6	165
14	Solution-processed organic spin–charge converter. Nature Materials, 2013, 12, 622-627.	27.5	162
15	Solutionâ€Crystallized Organic Fieldâ€Effect Transistors with Chargeâ€Acceptor Layers: Highâ€Mobility and Lowâ€Thresholdâ€Voltage Operation in Air. Advanced Materials, 2011, 23, 3309-3314.	21.0	156
16	Hall Effect of Quasi-Hole Gas in Organic Single-Crystal Transistors. Japanese Journal of Applied Physics, 2005, 44, L1393-L1396.	1.5	154
17	Mobility Exceeding 10 cm ² /(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport. Chemistry of Materials, 2016, 28, 420-424.	6.7	147
18	Selective triplet exciton formation in a single molecule. Nature, 2019, 570, 210-213.	27.8	142

SHUN WATANABE

#	Article	IF	CITATIONS
19	Robust, high-performance n-type organic semiconductors. Science Advances, 2020, 6, eaaz0632.	10.3	135
20	Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nature Communications, 2018, 9, 2899.	12.8	131
21	Coexistence of ultra-long spin relaxation time andÂcoherent charge transport in organic single-crystal semiconductors. Nature Physics, 2017, 13, 994-998.	16.7	126
22	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	7.9	121
23	High Electron Mobility in Air for <i>N,N</i> ′â€1 <i>H</i> ,1 <i>H</i> â€Perfluorobutyldicyanoperylene Carboxydiâ€imide Solutionâ€Crystallized Thinâ€Film Transistors on Hydrophobic Surfaces. Advanced Materials, 2011, 23, 3681-3685.	21.0	119
24	Bent-Shaped <i>p</i> -Type Small-Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. Journal of the American Chemical Society, 2020, 142, 9083-9096.	13.7	108
25	Suppressing molecular vibrations in organic semiconductors by inducing strain. Nature Communications, 2016, 7, 11156.	12.8	105
26	Inch-Size Solution-Processed Single-Crystalline Films of High-Mobility Organic Semiconductors. Applied Physics Express, 2013, 6, 076503.	2.4	102
27	Hall-Effect Measurements Probing the Degree of Charge-Carrier Delocalization in Solution-Processed Crystalline Molecular Semiconductors. Physical Review Letters, 2011, 107, 066601.	7.8	101
28	Jahn-Teller Distortion in Dangling-Bond Linear Chains Fabricated on a Hydrogen-Terminated Si(100)-2×1Surface. Physical Review Letters, 1999, 82, 4034-4037.	7.8	98
29	Boron-Stabilized Planar Neutral π-Radicals with Well-Balanced Ambipolar Charge-Transport Properties. Journal of the American Chemical Society, 2017, 139, 14336-14339.	13.7	97
30	Self-Consistent Density Functional Calculation of Field Emission Currents from Metals. Physical Review Letters, 2000, 85, 1750-1753.	7.8	74
31	Template- and Vacuum-Ultraviolet- Assisted Fabrication of a Ag-Nanoparticle Array on Flexible and Rigid Substrates. Advanced Materials, 2007, 19, 1267-1271.	21.0	73
32	Tuning the effective spin-orbit coupling in molecular semiconductors. Nature Communications, 2017, 8, 15200.	12.8	70
33	Highly Oriented Polymer Semiconductor Films Compressed at the Surface of Ionic Liquids for Highâ€Performance Polymeric Organic Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6430-6435.	21.0	69
34	Transition Between Band and Hopping Transport in Polymer Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 8169-8173.	21.0	61
35	Polarization fatigue of organic ferroelectric capacitors. Scientific Reports, 2014, 4, 5075.	3.3	61
36	Spontaneous Patterning of Highâ€Resolution Electronics via Parallel Vacuum Ultraviolet. Advanced Materials, 2016, 28, 6568-6573.	21.0	60

#	Article	IF	CITATIONS
37	Painting Integrated Complementary Logic Circuits for Singleâ€Crystal Organic Transistors: A Demonstration of a Digital Wireless Communication Sensing Tag. Advanced Electronic Materials, 2017, 3, 1600456.	5.1	57
38	High‣peed Organic Singleâ€Crystal Transistor Responding to Very High Frequency Band. Advanced Functional Materials, 2020, 30, 1909501.	14.9	57
39	Precise engineering of quantum dot array coupling through their barrier widths. Nature Communications, 2017, 8, 787.	12.8	55
40	Dinaphtho[1,2- <i>b</i> :2′,1′- <i>d</i>]chalcogenophenes: Comprehensive Investigation of the Effect of the Chalcogen Atoms in the Phenacene-Type π-Electronic Cores. Chemistry of Materials, 2013, 25, 3952-3956.	6.7	52
41	Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. Small, 2016, 12, 5303-5311.	10.0	52
42	Furan fused V-shaped organic semiconducting materials with high emission and high mobility. Chemical Communications, 2014, 50, 5342-5344.	4.1	49
43	High-speed organic transistors with three-dimensional organic channels and organic rectifiers based on them operating above 20MHz. Organic Electronics, 2015, 20, 119-124.	2.6	49
44	Study of contact resistance of high-mobility organic transistors through comparisons. Organic Electronics, 2013, 14, 2590-2595.	2.6	46
45	Molecular doping in organic semiconductors: fully solution-processed, vacuum-free doping with metal–organic complexes in an orthogonal solvent. Journal of Materials Chemistry C, 2017, 5, 12023-12030.	5.5	46
46	Microscopic Signature of Metallic State in Semicrystalline Conjugated Polymers Doped with Fluoroalkylsilane Molecules. Advanced Materials, 2014, 26, 2376-2383.	21.0	44
47	Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect kagome lattice. Science Advances, 2021, 7, .	10.3	44
48	Zigzagâ€Elongated Fused Ï€â€Electronic Core: A Molecular Design Strategy to Maximize Charge arrier Mobility. Advanced Science, 2018, 5, 1700317.	11.2	43
49	Synergistic Use of Pyridine and Selenophene in a Diketopyrrolopyrroleâ€Based Conjugated Polymer Enhances the Electron Mobility in Organic Transistors. Advanced Functional Materials, 2020, 30, 2000489.	14.9	43
50	Scalable Fabrication of Organic Single-Crystalline Wafers for Reproducible TFT Arrays. Scientific Reports, 2019, 9, 15897.	3.3	39
51	High-speed organic single-crystal transistors gated with short-channel air gaps: Efficient hole and electron injection in organic semiconductor crystals. Organic Electronics, 2013, 14, 1656-1662.	2.6	38
52	Nitrogen-Containing Perylene Diimides: Molecular Design, Robust Aggregated Structures, and Advances in n-Type Organic Semiconductors. Accounts of Chemical Research, 2022, 55, 660-672.	15.6	38
53	Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein Journal of Nanotechnology, 2019, 10, 2014-2030.	2.8	37
54	A Large Anisotropic Enhancement of the Charge Carrier Mobility of Flexible Organic Transistors with Strain: A Hall Effect and Raman Study. Advanced Science, 2020, 7, 1901824.	11.2	37

#	Article	IF	CITATIONS
55	100 °C-Langmuir–Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 56522-56529.	8.0	37
56	Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules. ACS Applied Materials & Interfaces, 2017, 9, 18039-18045.	8.0	34
57	Facile strain analysis of largely bending films by a surface-labelled grating method. Scientific Reports, 2014, 4, 5377.	3.3	33
58	Stable growth of large-area single crystalline thin films from an organic semiconductor/polymer blend solution for high-mobility organic field-effect transistors. Organic Electronics, 2016, 39, 127-132.	2.6	33
59	Shortâ€Channel Solutionâ€Processed Organic Semiconductor Transistors and their Application in Highâ€Speed Organic Complementary Circuits and Organic Rectifiers. Advanced Electronic Materials, 2015, 1, 1500178.	5.1	32
60	High-performance, semiconducting membrane composed of ultrathin, single-crystal organic semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 80-85.	7.1	32
61	Highâ€Yield, Highly Uniform Solutionâ€Processed Organic Transistors Integrated into Flexible Organic Circuits. Advanced Electronic Materials, 2017, 3, 1600410.	5.1	31
62	Homogeneous dewetting on large-scale microdroplet arrays for solution-processed electronics. NPG Asia Materials, 2017, 9, e409-e409.	7.9	31
63	Oxygen- and Sulfur-Bridged Bianthracene V-Shaped Organic Semiconductors. Bulletin of the Chemical Society of Japan, 2017, 90, 931-938.	3.2	28
64	Validity of the Mott formula and the origin of thermopower in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ï€</mml:mi> -conjugated semicrystalline polymers. Physical Review B, 2019, 100, .</mml:math 	3.2	26
65	Alkyl-Substituted Selenium-Bridged V-Shaped Organic Semiconductors Exhibiting High Hole Mobility and Unusual Aggregation Behavior. Journal of the American Chemical Society, 2020, 142, 14974-14984.	13.7	25
66	Solution-processed flexible metal-oxide thin-film transistors operating beyond 20 MHz. Flexible and Printed Electronics, 2020, 5, 015003.	2.7	25
67	Two-dimensional hole gas in organic semiconductors. Nature Materials, 2021, 20, 1401-1406.	27.5	25
68	Correlation between the static and dynamic responses of organic single-crystal field-effect transistors. Nature Communications, 2020, 11, 4839.	12.8	24
69	Uniaxially Oriented Electrically Conductive Metal–Organic Framework Nanosheets Assembled at Air/Liquid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 54570-54578.	8.0	24
70	Remarkably low flicker noise in solution-processed organic single crystal transistors. Communications Physics, 2018, 1, .	5.3	23
71	Air-Stable Benzo[<i>c</i>]thiophene Diimide <i>n</i> -Type π-Electron Core. Organic Letters, 2019, 21, 4448-4453.	4.6	23
72	High performance solution-crystallized thin-film transistors based on V-shaped thieno[3,2-f:4,5-fâ€2]bis[1]benzothiophene semiconductors. Journal of Materials Chemistry C, 2017, 5, 1903-1909.	5.5	22

#	Article	IF	CITATIONS
73	Manipulations of Chiroptical Properties in Beltâ€Persistent Cycloarylenes via Desymmetrization with Heteroatom Doping. Angewandte Chemie - International Edition, 2021, 60, 19097-19101.	13.8	22
74	Enhancement of the Exciton Coherence Size in Organic Semiconductor by Alkyl Chain Substitution. Journal of Physical Chemistry C, 2016, 120, 7941-7948.	3.1	20
75	Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High- <i>k</i> Dielectrics. ACS Applied Materials & Interfaces, 2017, 9, 4719-4724.	8.0	20
76	Control of molecular doping in conjugated polymers by thermal annealing. Organic Electronics, 2017, 47, 139-146.	2.6	20
77	Strainâ€Modulated Charge Transport in Flexible PbS Nanocrystal Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1600360.	5.1	20
78	Nanoscale Analysis of Surface Bending Strain in Film Substrates for Preventing Fracture in Flexible Electronic Devices. Advanced Materials Interfaces, 2021, 8, 2001662.	3.7	20
79	Signature of the insulator–metal transition of a semicrystalline conjugated polymer in ionic-liquid-gated transistors. Applied Physics Express, 2015, 8, 021601.	2.4	19
80	The emergence of charge coherence in soft molecular organic semiconductors via the suppression of thermal fluctuations. NPG Asia Materials, 2016, 8, e252-e252.	7.9	19
81	Coherent Electron Transport in Airâ€Stable, Printed Singleâ€Crystal Organic Semiconductor and Application to Megahertz Transistors. Advanced Materials, 2020, 32, e2003245.	21.0	19
82	Tuning Spin Current Injection at Ferromagnet-Nonmagnet Interfaces by Molecular Design. Physical Review Letters, 2020, 124, 027204.	7.8	19
83	Chemical potential shift in organic field-effect transistors identified by soft X-ray <i>operando</i> nano-spectroscopy. Applied Physics Letters, 2015, 106, .	3.3	18
84	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	5.8	17
85	Damage-free Metal Electrode Transfer to Monolayer Organic Single Crystalline Thin Films. Scientific Reports, 2020, 10, 4702.	3.3	17
86	Supramolecular cocrystals built through redox-triggered ion intercalation in π-conjugated polymers. Communications Materials, 2021, 2, .	6.9	16
87	Direct Observation of One-Dimensional Ga-Atom Migration on a Si(100)-(2×1)-H Surface: A Local Probe of Adsorption Energy Variation. Physical Review Letters, 1999, 83, 4116-4119.	7.8	15
88	High performance oxygen-bridged N-shaped semiconductors with a stabilized crystal phase and blue luminescence. RSC Advances, 2016, 6, 28966-28969.	3.6	15
89	Solution-crystallized n-type organic thin-film transistors: An impact of branched alkyl chain on high electron mobility and thermal durability. Organic Electronics, 2018, 62, 548-553.	2.6	15
90	Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers. Applied Physics Letters, 2017, 110, .	3.3	14

#	Article	IF	CITATIONS
91	Cooperative Aggregations of Nitrogen-Containing Perylene Diimides Driven by Rigid and Flexible Functional Groups. Chemistry of Materials, 2020, 32, 9115-9125.	6.7	14
92	Electrolessâ€Plated Gold Contacts for Highâ€Performance, Low Contact Resistance Organic Thin Film Transistors. Advanced Functional Materials, 2020, 30, 2003977.	14.9	14
93	Hyper 100 °C Langmuir–Blodgett (Langmuir–Schaefer) Technique for Organized Ultrathin Film of Polymeric Semiconductors. Langmuir, 2022, 38, 5237-5247.	3.5	14
94	Mixed-Orbital Charge Transport in N-Shaped Benzene- and Pyrazine-Fused Organic Semiconductors. Journal of the American Chemical Society, 2022, 144, 11159-11167.	13.7	14
95	Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 13075-13083.	2.8	13
96	Charge mobility calculation of organic semiconductors without use of experimental single-crystal data. Scientific Reports, 2020, 10, 2524.	3.3	13
97	Atomic and electronic structure of the Si(111)-â^š3xâ^š3-Ag surface reexamined using first-principles calculations. Science and Technology of Advanced Materials, 2000, 1, 167-172.	6.1	12
98	Ionic-Liquid-Originated Carrier Trapping Dynamics at the Interface in Electric Double-Layer Organic FET Revealed by Operando Interfacial Analyses. Journal of Physical Chemistry C, 2020, 124, 2543-2552.	3.1	12
99	Low-voltage complementary inverters using solution-processed, high-mobility organic single-crystal transistors fabricated by polymer-blend printing. Applied Physics Letters, 2020, 117, 033301.	3.3	12
100	Electron Spin Resonance of Charge Carriers in Organic Field-Effect Devices. Applied Magnetic Resonance, 2009, 36, 357-370.	1.2	11
101	Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors. Communications Materials, 2020, 1, .	6.9	11
102	Evaluations of nonlocal electron-phonon couplings in tetracene, rubrene, and C10â^'DNBDTâ^'NW based on density functional theory. Physical Review B, 2020, 102, .	3.2	11
103	Tunable doping in PbS nanocrystal field-effect transistors using surface molecular dipoles. APL Materials, 2016, 4, 116105.	5.1	10
104	Energy-dependent relaxation time in quaternary amorphous oxide semiconductors probed by gated Hall effect measurements. Physical Review B, 2017, 95, .	3.2	10
105	Patterned Quantum Dot Photosensitive FETs for Medium Frequency Optoelectronics. Advanced Materials Technologies, 2019, 4, 1900054.	5.8	10
106	Sub-molecular structural relaxation at a physisorbed interface with monolayer organic single-crystal semiconductors. Communications Physics, 2020, 3, .	5.3	10
107	Role of Perfluorophenyl Group in the Side Chain of Small-Molecule n-Type Organic Semiconductors in Stress Stability of Single-Crystal Transistors. Journal of Physical Chemistry Letters, 2021, 12, 2095-2101.	4.6	10
108	Surface Doping of Organic Singleâ€Crystal Semiconductors to Produce Strainâ€Sensitive Conductive Nanosheets. Advanced Science, 2021, 8, 2002065.	11.2	10

#	Article	IF	CITATIONS
109	Strong and Atmospherically Stable Dicationic Oxidative Dopant. Advanced Science, 2021, 8, e2101998.	11.2	10
110	Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents. Communications Chemistry, 2021, 4, .	4.5	10
111	ESR studies of ambipolar charge carriers in metal–insulator–semiconductor diodes of regioregular poly(3-hexylthiophene)/PCBM composites. Synthetic Metals, 2009, 159, 893-896.	3.9	9
112	Microscopic hole-transfer efficiency in organic thin-film transistors studied with charge-modulation spectroscopy. Physical Review B, 2015, 91, .	3.2	9
113	Manipulations of Chiroptical Properties in Beltâ€Persistent Cycloarylenes via Desymmetrization with Heteroatom Doping. Angewandte Chemie, 2021, 133, 19245-19249.	2.0	9
114	Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications. Applied Physics Express, 2022, 15, 030101.	2.4	9
115	Doped semiconducting polymer nanoantennas for tunable organic plasmonics. Communications Materials, 2022, 3, .	6.9	9
116	Stabilizing solution-processed metal oxide thin-film transistors via trilayer organic–inorganic hybrid passivation. AIP Advances, 2021, 11, .	1.3	8
117	Band mobility exceeding 10 cm2 Vâ^'1 sâ^'1 assessed by field-effect and chemical double doping in semicrystalline polymeric semiconductors. Applied Physics Letters, 2021, 119, 013302.	3.3	8
118	Correlation between coherent charge transport and crystallinity in doped <i>Ï€</i> -conjugated polymers. Applied Physics Express, 2019, 12, 011004.	2.4	7
119	Band-like transporting and thermally durable V-shaped organic semiconductors with a phenyl key block. Journal of Materials Chemistry C, 2020, 8, 14172-14179.	5.5	7
120	Electronic excitation spectra of organic semiconductor/ionic liquid interface by electrochemical attenuated total reflectance spectroscopy. Communications Chemistry, 2021, 4, .	4.5	7
121	Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants. Journal of Materials Chemistry C, 2021, 9, 4105-4111.	5.5	7
122	Oxygen―and Sulfurâ€bridged Lâ€shaped Ï€â€Conjugated Molecules: Synthesis, Aggregated Structures, and Charge Transporting Behavior. Asian Journal of Organic Chemistry, 2018, 7, 2309-2314.	2.7	6
123	Rapid improvements in charge carrier mobility at ionic liquid/pentacene single crystal interfaces by self-cleaning. Physical Chemistry Chemical Physics, 2020, 22, 6131-6135.	2.8	6
124	Theoretical analysis of the bias-voltage dependence of the apparent barrier height. Physical Review B, 2004, 70, .	3.2	5
125	Endâ€Capping Ï€â€Conjugated Systems with Mediumâ€Sized Sulfurâ€Containing Rings: A Route Towards Solutionâ€Processable Airâ€Stable Semiconductors. Chemistry - A European Journal, 2018, 24, 11503-11510.	3.3	5
126	Nanoâ€Ground Glass as a Superhydrophilic Template for Printing Highâ€Performance Organic Singleâ€Crystal Thin Films. Advanced Materials Interfaces, 2021, 8, 2100033.	3.7	5

#	Article	IF	CITATIONS
127	<i>Operando</i> atomic force microscopy study of electric double-layer transistors based on ionic liquid/rubrene single crystal interfaces. Applied Physics Letters, 2021, 118, .	3.3	5
128	Evaluating intrinsic mobility from transient terahertz conductivity spectra of microcrystal samples of organic molecular semiconductors. Applied Physics Letters, 2019, 115, .	3.3	3
129	Dissociation Mechanism of a Single O ₂ Molecule Chemisorbed on Ag(110). Journal of Physical Chemistry Letters, 2021, 12, 9868-9873.	4.6	3
130	Neutral Mechanical Plane Shifting in Bending Elastomer Film Revealed by Quantification of Internal Strain. Advanced Engineering Materials, 2022, 24, 2101041.	3.5	3
131	Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model. Applied Physics Letters, 2022, 120, .	3.3	3
132	Alkylated oxygen-bridged V-shaped molecules: impacts of the substitution position and length of the alkyl chains on the crystal structures and fundamental properties in aggregated forms. Polymer Journal, 2017, 49, 215-221.	2.7	2
133	Organic Semiconductors: Zigzag-Elongated Fused π-Electronic Core: A Molecular Design Strategy to Maximize Charge-Carrier Mobility (Adv. Sci. 1/2018). Advanced Science, 2018, 5, 1870005.	11.2	2
134	Thin and Flexible Printed Antenna Designed for Curved Metal Surfaces. Flexible and Printed Electronics, 0, , .	2.7	2
135	Regioselective Functionalization of Nitrogen-Embedded Perylene Diimides for High-Performance Organic Electron-Transporting Materials. Bulletin of the Chemical Society of Japan, 2022, 95, 953-960.	3.2	2
136	Organic Semiconductors: V-Shaped Organic Semiconductors With Solution Processability, High Mobility, and High Thermal Durability (Adv. Mater. 44/2013). Advanced Materials, 2013, 25, 6306-6306.	21.0	1
137	Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors. Journal of Applied Physics, 2018, 123, .	2.5	1
138	Transmission electron diffraction study of a uniaxially-ordered high-mobility polymeric semiconductor. Microscopy (Oxford, England), 2019, 68, 167-173.	1.5	1
139	High carrier density, electrostatic doping in organic single crystal semiconductors using electret polymers. Applied Physics Express, 2019, 12, 071001.	2.4	1
140	Effect of Electronically Distinct Aromatic Substituents on the Molecular Assembly and Hole Transport of V-Shaped Organic Semiconductors. Journal of Physical Chemistry C, 2020, 124, 17503-17511.	3.1	1
141	Surface Bending Strain: Nanoscale Analysis of Surface Bending Strain in Film Substrates for Preventing Fracture in Flexible Electronic Devices (Adv. Mater. Interfaces 5/2021). Advanced Materials Interfaces, 2021, 8, 2170026.	3.7	0
142	Ferromagnetism in Hubbard models for Quantum Atomic Wires. Journal of the Magnetics Society of Japan, 1999, 23, 676-678.	0.4	0
143	Gate induced modulation of electronic states in monolayer organic field-effect transistor. Applied Physics Letters, 2021, 119, 223301.	3.3	0