Yong Song Gho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11381185/publications.pdf

Version: 2024-02-01

15504 18130 24,937 120 65 120 citations h-index g-index papers 121 121 121 28148 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of Extracellular Vesicles for Proteomic Profiling. Methods in Molecular Biology, 2021, 2261, 193-206.	0.9	11
2	Extracellular vesicles from in vivo liver tissue accelerate recovery of liver necrosis induced by carbon tetrachloride. Journal of Extracellular Vesicles, 2021, 10, e12133.	12.2	17
3	RNA-sequencing profiling analysis of pericyte-derived extracellular vesicle–mimetic nanovesicles-regulated genes in primary cultured fibroblasts from normal and Peyronie's disease penile tunica albuginea. BMC Urology, 2021, 21, 103.	1.4	2
4	Formation of a protein corona on the surface of extracellular vesicles in blood plasma. Journal of Extracellular Vesicles, 2021, 10, e12140.	12.2	150
5	Extracellular vesicles derived from the periodontal pathogen <i>Filifactor alocis</i> induce systemic bone loss through Tollâ€ike receptor 2. Journal of Extracellular Vesicles, 2021, 10, e12157.	12.2	26
6	Pericyteâ€'derived extracellular vesiclesâ€'mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. International Journal of Molecular Medicine, 2021, 49, .	4.0	3
7	A brief history of nearly EVâ€erything – The rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12144.	12.2	150
8	Pericyte-Derived Extracellular Vesicle–Mimetic Nanovesicles Restore Erectile Function by Enhancing Neurovascular Regeneration in a Mouse Model of Cavernous Nerve Injury. Journal of Sexual Medicine, 2020, 17, 2118-2128.	0.6	11
9	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	12.2	77
10	Extracellular vesicles derived from macrophages display glycylâ€ŧRNA synthetase 1 and exhibit anti ancer activity. Journal of Extracellular Vesicles, 2020, 10, e12029.	12.2	14
11	Quantitative proteomic analysis of trypsinâ€treated extracellular vesicles to identify the realâ€vesicular proteins. Journal of Extracellular Vesicles, 2020, 9, 1757209.	12.2	27
12	Indoor dust extracellular vesicles promote cancer lung metastasis by inducing tumour necrosis factorâ€Î±. Journal of Extracellular Vesicles, 2020, 9, 1766821.	12.2	9
13	Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. Journal of Extracellular Vesicles, 2020, 9, 1722433.	12.2	130
14	Extracellular Vesicle–Mimetic Ghost Nanovesicles for Delivering Antiâ€Inflammatory Drugs to Mitigate Gramâ€Negative Bacterial Outer Membrane Vesicle–Induced Systemic Inflammatory Response Syndrome. Advanced Healthcare Materials, 2019, 8, e1801082.	7.6	45
15	Toll-Like Receptors 2 and 4 Modulate Pulmonary Inflammation and Host Factors Mediated by Outer Membrane Vesicles Derived from Acinetobacter baumannii. Infection and Immunity, 2019, 87, .	2,2	34
16	Journal of extracellular vesicles: the seven year itch!. Journal of Extracellular Vesicles, 2019, 8, 1654729.	12.2	15
17	Endosomal signalling via exosome surface TGFβâ€1. Journal of Extracellular Vesicles, 2019, 8, 1650458.	12.2	112
18	Special issue on the role of extracellular vesicles in human diseases. Experimental and Molecular Medicine, 2019, 51, 1-2.	7.7	4

#	Article	IF	CITATIONS
19	Direct differentiation of bone marrow mononucleated cells into insulin producing cells using pancreatic \hat{l}^2 -cell-derived components. Scientific Reports, 2019, 9, 5343.	3.3	4
20	Embryonic stem cell-derived extracellular vesicle-mimetic nanovesicles rescue erectile function by enhancing penile neurovascular regeneration in the streptozotocin-induced diabetic mouse. Scientific Reports, 2019, 9, 20072.	3.3	17
21	Drug Repositioning to Alleviate Systemic Inflammatory Response Syndrome Caused by Gramâ€Negative Bacterial Outer Membrane Vesicles. Advanced Healthcare Materials, 2018, 7, e1701476.	7.6	16
22	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
23	Outer Membrane Vesicles Derived From Escherichia coli Regulate Neutrophil Migration by Induction of Endothelial IL-8. Frontiers in Microbiology, 2018, 9, 2268.	3.5	48
24	Endogenous Radionanomedicine: Extracellular Vesicles. Biological and Medical Physics Series, $2018, 127-140$.	0.4	1
25	Sepsis-Like Systemic Inflammation Induced by Nano-Sized Extracellular Vesicles From Feces. Frontiers in Microbiology, 2018, 9, 1735.	3.5	45
26	Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks. Molecular BioSystems, 2017, 13, 1291-1296.	2.9	64
27	Cellâ€Engineered Nanovesicle as a Surrogate Inducer of Contactâ€Dependent Stimuli. Advanced Healthcare Materials, 2017, 6, 1700381.	7.6	9
28	Extracellular vesicle mimetics: Novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Seminars in Cell and Developmental Biology, 2017, 67, 74-82.	5.0	63
29	Bioinformatics Tools for Extracellular Vesicles Research. Methods in Molecular Biology, 2017, 1545, 189-196.	0.9	16
30	Bacterial outer membrane vesicles suppress tumor by interferon- \hat{I}^3 -mediated antitumor response. Nature Communications, 2017, 8, 626.	12.8	329
31	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	12.2	314
32	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	12.2	185
33	BRAF ^{V600} inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5930-E5939.	7.1	101
34	Bacterial protoplast-derived nanovesicles for tumor targeted delivery of chemotherapeutics. Biomaterials, 2017, 113, 68-79.	11.4	66
35	Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing. RNA Biology, 2017, 14, 58-72.	3.1	111
36	The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles. Journal of Extracellular Vesicles, 2016, 5, 34299.	12.2	19

#	Article	IF	CITATIONS
37	Proteomic profiling of Gramâ€negative bacterial outer membrane vesicles: Current perspectives. Proteomics - Clinical Applications, 2016, 10, 897-909.	1.6	101
38	RNAi delivery by exosome-mimetic nanovesicles $\hat{a} \in$ Implications for targeting c-Myc in cancer. Biomaterials, 2016, 102, 231-238.	11.4	188
39	Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Scientific Reports, 2015, 5, 15878.	3.3	140
40	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
41	Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO. Scientific Reports, 2015, 5, 15636.	3.3	186
42	High-yield isolation of extracellular vesicles using aqueous two-phase system. Scientific Reports, 2015, 5, 13103.	3.3	111
43	Proteomic analysis of extracellular vesicles derived from <i>Mycobacterium tuberculosis</i> Proteomics, 2015, 15, 3331-3337.	2.2	90
44	Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 2015, 6, 11327-11341.	1.8	289
45	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
46	Gram-negative and Gram-positive bacterial extracellular vesicles. Seminars in Cell and Developmental Biology, 2015, 40, 97-104.	5.0	307
47	EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research. Seminars in Cell and Developmental Biology, 2015, 40, 4-7.	5.0	99
48	Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells $\hat{a} \in \text{``Evidence of unique microRNA cargos. RNA Biology, 2015, 12, 810-823.}$	3.1	164
49	Extracellular Vesicles Derived from Gram-Negative Bacteria, such as <i>Escherichia coli</i> , Induce Emphysema Mainly via IL-17A–Mediated Neutrophilic Inflammation. Journal of Immunology, 2015, 194, 3361-3368.	0.8	45
50	<i>In Vivo</i> Differentiation of Therapeutic Insulin-Producing Cells from Bone Marrow Cells <i>via</i> Extracellular Vesicle-Mimetic Nanovesicles. ACS Nano, 2015, 9, 11718-11727.	14.6	78
51	Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental and Molecular Medicine, 2015, 47, e183-e183.	7.7	101
52	Bacterial Protoplast-Derived Nanovesicles as Vaccine Delivery System against Bacterial Infection. Nano Letters, 2015, 15, 266-274.	9.1	80
53	Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrometry Reviews, 2015, 34, 474-490.	5.4	336
54	In vivo Kinetic Biodistribution of Nano-Sized Outer Membrane Vesicles Derived from Bacteria. Small, 2015, 11, 456-461.	10.0	118

#	Article	IF	CITATIONS
55	Isolation of Extracellular Vesicles for Proteomic Profiling. Methods in Molecular Biology, 2015, 1295, 167-177.	0.9	21
56	Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS ONE, 2015, 10, e0136021.	2.5	108
57	Extracellular vesicles as emerging intercellular communicasomes. BMB Reports, 2014, 47, 531-539.	2.4	199
58	MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer, 2014, 14, 962.	2.6	83
59	Comparative interactomes of <scp>SIRT</scp> 6 and <scp>SIRT</scp> 7: Implication of functional links to aging. Proteomics, 2014, 14, 1610-1622.	2.2	69
60	Nanovesicles engineered from ES cells for enhanced cell proliferation. Biomaterials, 2014, 35, 9302-9310.	11.4	68
61	Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab on A Chip, 2014, 14, 1261-1269.	6.0	116
62	Could bioengineered exosome-mimetic nanovesicles be an efficient strategy for the delivery of chemotherapeutics?. Nanomedicine, 2014, 9, 177-180.	3.3	39
63	Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2014, 3, 26913.	12.2	2,110
64	Importance of exosome depletion protocols to eliminate functional and RNAâ€containing extracellular vesicles from fetal bovine serum. Journal of Extracellular Vesicles, 2014, 3, .	12.2	353
65	An Important Role of α-Hemolysin in Extracellular Vesicles on the Development of Atopic Dermatitis Induced by Staphylococcus aureus. PLoS ONE, 2014, 9, e100499.	2.5	91
66	Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways. PLoS ONE, 2014, 9, e115170.	2.5	36
67	Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors. ACS Nano, 2013, 7, 7698-7710.	14.6	768
68	Immunization with <i>Escherichia coli</i> Outer Membrane Vesicles Protects Bacteria <i><i>Induced Lethality via Th1 and Th17 Cell Responses. Journal of Immunology, 2013, 190, 4092-4102.</i></i>	0.8	134
69	Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. Proteomics, 2013, 13, 2125-2134.	2.2	84
70	Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 2013, 13, 1554-1571.	2,2	416
71	Staphylococcus aureus Extracellular Vesicles Carry Biologically Active \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2013, 57, 2589-2595.	3.2	172
72	Pulmonary Inflammation Induced by Bacteria-Free Outer Membrane Vesicles from <i>Pseudomonas aeruginosa</i> . American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 637-645.	2.9	75

#	Article	IF	Citations
73	Circulating Extracellular Vesicles in Cancer Diagnosis and Monitoring. Molecular Diagnosis and Therapy, 2013, 17, 265-271.	3.8	51
74	Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback. Experimental and Molecular Medicine, 2013, 45, e5-e5.	7.7	10
75	Epstein-Barr Virus-Encoded MicroRNA BART15-3p Promotes Cell Apoptosis Partially by Targeting BRUCE. Journal of Virology, 2013, 87, 8135-8144.	3.4	94
76	Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences and Engineering, 2013, 10, $1095-1133$.	1.9	36
77	EVpedia: an integrated database of high $\hat{\epsilon}$ throughput data for systemic analyses of extracellular vesicles. Journal of Extracellular Vesicles, 2013, 2, .	12.2	401
78	Three-Dimensional Imaging of Hepatic Sinusoids in Mice Using Synchrotron Radiation Micro-Computed Tomography. PLoS ONE, 2013, 8, e68600.	2.5	25
79	Extracellular Vesicles Derived from Gut Microbiota, Especially Akkermansia muciniphila, Protect the Progression of Dextran Sulfate Sodium-Induced Colitis. PLoS ONE, 2013, 8, e76520.	2.5	407
80	Outer Membrane Vesicles Derived from Escherichia coli Up-Regulate Expression of Endothelial Cell Adhesion Molecules In Vitro and In Vivo. PLoS ONE, 2013, 8, e59276.	2.5	52
81	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
82	Airway Activation of Formyl Peptide Receptors Inhibits Th1 and Th17 Cell Responses via Inhibition of Mediator Release from Immune and Inflammatory Cells and Maturation of Dendritic Cells. Journal of Immunology, 2012, 188, 1799-1808.	0.8	22
83	Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. Journal of Extracellular Vesicles, 2012, 1, .	12.2	108
84	The Protein Interaction Network of Extracellular Vesicles Derived from Human Colorectal Cancer Cells. Journal of Proteome Research, 2012, 11, 1144-1151.	3.7	66
85	Microfluidic filtration system to isolate extracellular vesicles from blood. Lab on A Chip, 2012, 12, 5202.	6.0	325
86	Therapeutic Effects of Autologous Tumor-Derived Nanovesicles on Melanoma Growth and Metastasis. PLoS ONE, 2012, 7, e33330.	2.5	58
87	Dab2 is pivotal for endothelial cell migration by mediating VEGF expression in cancer cells. Experimental Cell Research, 2012, 318, 550-557.	2.6	15
88	Proteomic analysis of outer membrane vesicles derived from <i>Pseudomonas aeruginosa</i> Proteomics, 2011, 11, 3424-3429.	2.2	209
89	Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics, 2011, 11, 2745-2751.	2.2	147
90	Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon- \hat{l}^3 . Experimental and Molecular Medicine, 2011, 43, 169.	7.7	28

#	Article	IF	Citations
91	Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1256-1265.	5.7	22
92	IL-12-STAT4-IFN- \hat{I}^3 axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model. Experimental and Molecular Medicine, 2010, 42, 533.	7.7	23
93	Role of inducible nitric oxide synthase on the development of virus-associated asthma exacerbation which is dependent on Th1 and Th17 cell responses. Experimental and Molecular Medicine, 2010, 42, 721.	7.7	14
94	A serum-stable branched dimeric anti-VEGF peptide blocks tumor growth via anti-angiogenic activity. Experimental and Molecular Medicine, 2010, 42, 514.	7.7	20
95	Aspirin attenuates the anti-inflammatory effects of theophylline via inhibition of cAMP production in mice with non-eosinophilic asthma. Experimental and Molecular Medicine, 2010, 42, 47.	7.7	10
96	Distinct Roles of Vascular Endothelial Growth Factor Receptor-1– and Receptor-2–Mediated Signaling in T Cell Priming and Th17 Polarization to Lipopolysaccharide-Containing Allergens in the Lung. Journal of Immunology, 2010, 185, 5648-5655.	0.8	31
97	A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochemical and Biophysical Research Communications, 2010, 397, 251-256.	2.1	71
98	Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome. PLoS ONE, 2010, 5, e11334.	2.5	150
99	Vascular Endothelial Growth Factor Is a Key Mediator in the Development of T Cell Priming and Its Polarization to Type 1 and Type 17 T Helper Cells in the Airways. Journal of Immunology, 2009, 183, 5113-5120.	0.8	66
100	Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics, 2009, 10, 556.	2.8	361
101	Gramâ€positive bacteria produce membrane vesicles: Proteomicsâ€based characterization of <i>Staphylococcus aureus</i> à€derived membrane vesicles. Proteomics, 2009, 9, 5425-5436.	2.2	532
102	Proteome analysis of outer membrane vesicles from a clinical <i>Acinetobacter baumannii</i> FEMS Microbiology Letters, 2009, 297, 150-156.	1.8	149
103	Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2150-2159.	2.6	90
104	Proteomics in gramâ€negative bacterial outer membrane vesicles. Mass Spectrometry Reviews, 2008, 27, 535-555.	5.4	288
105	Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood, 2008, 112, 1129-1138.	1.4	110
106	Polyphosphate blocks tumour metastasis via anti-angiogenic activity. Biochemical Journal, 2007, 406, 49-55.	3.7	50
107	Airway Exposure Levels of Lipopolysaccharide Determine Type 1 versus Type 2 Experimental Asthma. Journal of Immunology, 2007, 178, 5375-5382.	0.8	190
108	Proteomic Analysis of Microvesicles Derived from Human Colorectal Cancer Cells. Journal of Proteome Research, 2007, 6, 4646-4655.	3.7	176

#	Article	IF	CITATIONS
109	Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge. Journal of Allergy and Clinical Immunology, 2007, 119, 831-837.	2.9	63
110	TH2 and TH1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA. Journal of Allergy and Clinical Immunology, 2007, 120, 803-812.	2.9	65
111	Global proteomic profiling of native outer membrane vesicles derived from <i>Escherichia coli</i> . Proteomics, 2007, 7, 3143-3153.	2.2	352
112	Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. Journal of Neurochemistry, 2005, 93, 118-127.	3.9	35
113	Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine, 2005, 30, 254-263.	3.2	84
114	Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Letters, 2004, 570, 47-51.	2.8	69
115	Co-accumulation of vascular endothelial growth factor with β-amyloid in the brain of patients with Alzheimer's disease. Neurobiology of Aging, 2004, 25, 283-290.	3.1	148
116	The actin binding site on thymosin \hat{l}^2 4 promotes angiogenesis. FASEB Journal, 2003, 17, 1-13.	0.5	115
117	Antiplasmin Activity of a Peptide That Binds to the Receptor-binding Site of Angiogenin. Journal of Biological Chemistry, 2002, 277, 9690-9694.	3.4	15
118	Endostatin Blocks Vascular Endothelial Growth Factor-mediated Signaling via Direct Interaction with KDR/Flk-1. Journal of Biological Chemistry, 2002, 277, 27872-27879.	3.4	367
119	Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Research, 2002, 62, 6312-7.	0.9	206
120	Anti-angiogenin Activity of the Peptides Complementary to the Receptor-binding Site of Angiogenin. Journal of Biological Chemistry, 1997, 272, 24294-24299.	3.4	27