Roberto Furlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1137912/publications.pdf

Version: 2024-02-01

196 papers 14,217 citations

61 h-index 23533 111 g-index

200 all docs

200 docs citations

times ranked

200

17989 citing authors

#	Article	IF	Citations
1	SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study. Multiple Sclerosis Journal, 2022, 28, 1034-1040.	3.0	37
2	MiRâ€142â€3p regulates synaptopathyâ€driven disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	13
3	Long-term consequences of COVID-19 on cognitive functioning up to 6Âmonths after discharge: role of depression and impact on quality of life. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 773-782.	3.2	67
4	One-year mental health outcomes in a cohort of COVID-19 survivors. Journal of Psychiatric Research, 2022, 145, 118-124.	3.1	57
5	Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules, 2022, 12, 222.	4.0	21
6	The impact of storage on extracellular vesicles: A systematic study. Journal of Extracellular Vesicles, 2022, 11, e12162.	12.2	88
7	The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes, 2022, 13, 332.	2.4	5
8	Mood-congruent negative thinking styles and cognitive vulnerability in depressed COVID-19 survivors: A comparison with major depressive disorder. Journal of Affective Disorders, 2022, 308, 554-561.	4.1	6
9	Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes, 2022, 13, 897.	2.4	3
10	Anti-SARS-CoV-2 T-stem cell memory persists in ocrelizumab-treated MS patients. Multiple Sclerosis Journal, 2022, 28, 1937-1943.	3.0	6
11	Fluid phase biomarkers in multiple sclerosis. Current Opinion in Neurology, 2022, 35, 286-292.	3.6	6
12	Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis. Neurobiology of Disease, 2022, 172, 105817.	4.4	8
13	A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110136.	4.8	49
14	Laquinimod dampens IL- \hat{l}^2 signaling and Th17-polarizing capacity of monocytes in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	5
15	Higher baseline interleukin- $1\hat{l}^2$ and TNF- \hat{l}_\pm hamper antidepressant response in major depressive disorder. European Neuropsychopharmacology, 2021, 42, 35-44.	0.7	25
16	Polarized cells display asymmetric release of extracellular vesicles. Traffic, 2021, 22, 98-110.	2.7	12
17	CSF extracellular vesicles and risk of disease activity after a first demyelinating event. Multiple Sclerosis Journal, 2021, 27, 1606-1610.	3.0	9
18	Selective loss of microvesicles is a major issue of the differential centrifugation isolation protocols. Scientific Reports, 2021, 11, 3589.	3.3	19

#	Article	IF	Citations
19	The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells, 2021, 10, 330.	4.1	24
20	Classification of Psychoses Based on Immunological Features: A Machine Learning Study in a Large Cohort of First-Episode and Chronic Patients. Schizophrenia Bulletin, 2021, 47, 1141-1155.	4.3	11
21	Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain, 2021, 144, 848-862.	7.6	17
22	A Tolerizing mRNA Vaccine against Autoimmunity?. Molecular Therapy, 2021, 29, 896-897.	8.2	2
23	Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain, Behavior, and Immunity, 2021, 94, 138-147.	4.1	299
24	Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. Journal of Neurology, 2021, 268, 4436-4442.	3.6	63
25	Spinal Fluid Myeloid Microvesicles Predict Disease Course in Multiple Sclerosis. Annals of Neurology, 2021, 90, 253-265.	5.3	9
26	Cerebrospinal fluid levels of Lâ€glutamate signal central inflammatory neurodegeneration in multiple sclerosis. Journal of Neurochemistry, 2021, 159, 857-866.	3.9	7
27	Age at Disease Onset Associates With Oxidative Stress, Neuroinflammation, and Impaired Synaptic Plasticity in Relapsing-Remitting Multiple Sclerosis. Frontiers in Aging Neuroscience, 2021, 13, 694651.	3.4	9
28	Monocyte mitochondrial dysfunction, inflammaging, and inflammatory pyroptosis in major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110391.	4.8	43
29	Neutrophil-to-lymphocyte ratio: a marker of neuro-inflammation in multiple sclerosis?. Journal of Neurology, 2021, 268, 717-723.	3.6	19
30	Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: A multimodal magnetic resonance imaging study. Brain, Behavior, & Immunity - Health, 2021, 18, 100387.	2.5	57
31	Obesity worsens central inflammation and disability in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1237-1246.	3.0	72
32	A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes, 2020, 11, 1152.	2.4	5
33	Interleukin- $\hat{\Pi}^2$ Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 6982.	4.1	9
34	Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology, 2020, 95, 436-444.	1.1	100
35	Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain, Behavior, and Immunity, 2020, 89, 594-600.	4.1	1,118
36	Mir106b-25 and Mir17-92 Are Crucially Involved in the Development of Experimental Neuroinflammation. Frontiers in Neurology, 2020, 11, 912.	2.4	5

#	Article	IF	Citations
37	Cerebrospinal fluid inflammatory biomarkers predicting interferon-beta response in MS patients. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642097083.	3.5	5
38	Ventilation With Argon Improves Survival With Good Neurological Recovery After Prolonged Untreated Cardiac Arrest in Pigs. Journal of the American Heart Association, 2020, 9, e016494.	3.7	15
39	Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer's Disease Carrying Apolipoprotein E4 Genotype. Journal of Alzheimer's Disease, 2020, 76, 681-689.	2.6	27
40	Neuroinflammation in Bipolar Depression. Frontiers in Psychiatry, 2020, 11, 71.	2.6	161
41	IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 120.	3.7	32
42	Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Scientific Reports, 2020, 10, 6125.	3.3	27
43	Extracellular Vesicles in Neuroinflammation. Frontiers in Cell and Developmental Biology, 2020, 8, 623039.	3.7	34
44	Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2019, 33, 825-835.	2.9	26
45	Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN-Î ³ and IL-4. Cells, 2019, 8, 580.	4.1	15
46	Reply to "Serum Neurofilaments as Candidate Biomarkers of Natalizumab Progressive Multifocal Leukoencephalopathy― Annals of Neurology, 2019, 86, 324-324.	5.3	4
47	Transient Receptor Potential Vanilloid 1 Modulates Central Inflammation in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 30.	2.4	33
48	Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology, 2019, 92, e733-e741.	1.1	57
49	PDGF Modulates Synaptic Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis. Neurochemical Research, 2019, 44, 726-733.	3.3	5
50	Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death and Disease, 2018, 9, 250.	6.3	52
51	Differential local tissue permissiveness influences the final fate of <scp>GPR</scp> 17â€expressing oligodendrocyte precursors in two distinct models of demyelination. Glia, 2018, 66, 1118-1130.	4.9	37
52	Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathologica, 2018, 135, 529-550.	7.7	196
53	Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2018, 68, 197-210.	4.1	3
54	Extracellular vesicles in neurodegenerative diseases. Molecular Aspects of Medicine, 2018, 60, 52-61.	6.4	63

#	Article	IF	CITATIONS
55	Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. Journal of Neuroimmunology, 2018, 314, 89-93.	2.3	10
56	Disease-modifying treatments modulate myeloid cells in multiple sclerosis patients. Neurological Sciences, 2018, 39, 373-376.	1.9	11
57	AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Developmental Cell, 2018, 47, 592-607.e6.	7.0	34
58	Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. Sensors, 2018, 18, 3175.	3.8	107
59	Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. Journal of Neurology, 2018, 265, 2540-2547.	3.6	38
60	Cytokines Stimulate the Release of Microvesicles from Myeloid Cells Independently from the P2X7 Receptor/Acid Sphingomyelinase Pathway. Frontiers in Immunology, 2018, 9, 204.	4.8	34
61	Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Molecular Therapy, 2018, 26, 2107-2118.	8.2	93
62	Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 108.	7.2	22
63	Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2018, 323, 94-104.	2.3	17
64	Dysregulation of MS risk genes and pathways at distinct stages of disease. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e337.	6.0	34
65	Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology, 2017, 89, 1338-1347.	1.1	118
66	Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis. Scientific Reports, 2017, 7, 8981.	3.3	22
67	IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Scientific Reports, 2017, 7, 16547.	3.3	30
68	Amyloid-Î ² Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 390.	2.9	21
69	Free Light Chains and Intrathecal B Cells Activity in Multiple Sclerosis: A Prospective Study and Meta-Analysis. Multiple Sclerosis International, 2016, 2016, 1-9.	0.8	18
70	A new approach to follow a single extracellular vesicleâ€"cell interaction using optical tweezers. BioTechniques, 2016, 60, 35.	1.8	54
71	Myeloid Extracellular Vesicles: Messengers from the Demented Brain. Frontiers in Immunology, 2016, 7, 17.	4.8	23
72	NG2, a common denominator for neuroinflammation, blood–brain barrier alteration, and oligodendrocyte precursor response in EAE, plays a role in dendritic cell activation. Acta Neuropathologica, 2016, 132, 23-42.	7.7	25

#	Article	IF	Citations
73	Multiple Sclerosis and Neurodegenerative Diseases. , 2016, , 63-84.		9
74	MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Scientific Reports, 2016, 6, 34503.	3.3	55
75	Pentraxinâ€3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. European Journal of Immunology, 2016, 46, 701-711.	2.9	22
76	IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. Journal of Neuroinflammation, 2016 , 13 , 139 .	7.2	118
77	RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1405-1412.	3.0	46
78	Comparative Neuroregenerative Effects of C-Phycocyanin and IFN-Beta in a Model of Multiple Sclerosis in Mice. Journal of NeuroImmune Pharmacology, 2016, 11, 153-167.	4.1	22
79	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
80	KIR2DL2 inhibitory pathway enhances Th17 cytokine secretion by NK cells in response to herpesvirus infection in multiple sclerosis patients. Journal of Neuroimmunology, 2016, 294, 1-5.	2.3	16
81	T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17Âin multiple sclerosis. Clinical Science, 2015, 129, 291-303.	4.3	55
82	Microvesicles: What is the Role in Multiple Sclerosis?. Frontiers in Neurology, 2015, 6, 111.	2.4	46
83	Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3265-73.	7.1	61
84	Subclinical central inflammation is risk for RIS and CIS conversion to MS. Multiple Sclerosis Journal, 2015, 21, 1443-1452.	3.0	58
85	Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Multiple Sclerosis Journal, 2015, 21, 1013-1024.	3.0	249
86	Extracellular Vesicles in Alzheimer's Disease: Friends or Foes? Focus on Aβ-Vesicle Interaction. International Journal of Molecular Sciences, 2015, 16, 4800-4813.	4.1	73
87	Clinical significance of the number of oligoclonal bands in patients with clinically isolated syndromes. Journal of Neuroimmunology, 2015, 289, 62-67.	2.3	20
88	Methods for Biomarker Analysis. , 2015, , 159-171.		0
89	Effects of Isoxazolo-Pyridinone 7e, a Potent Activator of the Nurr1 Signaling Pathway, on Experimental Autoimmune Encephalomyelitis in Mice. PLoS ONE, 2014, 9, e108791.	2.5	36
90	Interleukin- $1\hat{l}^2$ causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Molecular Neurodegeneration, 2014, 9, 56.	10.8	78

#	Article	IF	Citations
91	The Peripheral Network between Oxidative Stress and Inflammation in Multiple Sclerosis. European Journal of Inflammation, 2014, 12, 351-363.	0.5	5
92	Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SPIO signal in the CNS after transplanted cell death. Nanomedicine, 2014, 9, 1457-1474.	3.3	22
93	Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica. Annals of Neurology, 2014, 75, 447-453.	5.3	43
94	Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nature Communications, 2014, 5, 5611.	12.8	177
95	Metallothioneins as dynamic markers for brain disease in lysosomal disorders. Annals of Neurology, 2014, 75, 127-137.	5.3	17
96	Oxidative Stress Is Differentially Present in Multiple Sclerosis Courses, Early Evident, and Unrelated to Treatment. Journal of Immunology Research, 2014, 2014, 1-9.	2.2	48
97	Diagnostic value of IgG4 Indices in IgG4-Related Hypertrophic Pachymeningitis. Journal of Neuroimmunology, 2014, 266, 82-86.	2.3	61
98	Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 271, 18-29.	2.3	26
99	Interleukin- $1\hat{l}^2$ Promotes Long-Term Potentiation in Patients with Multiple Sclerosis. NeuroMolecular Medicine, 2014, 16, 38-51.	3.4	64
100	Vitamin D levels and risk of multiple sclerosis in patients with clinically isolated syndromes. Multiple Sclerosis Journal, 2014, 20, 147-155.	3.0	94
101	Interleukin-8 is associated with acute and persistent dysfunction after optic neuritis. Multiple Sclerosis Journal, 2014, 20, 1841-1850.	3.0	17
102	Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Multiple Sclerosis Journal, 2014, 20, 304-312.	3.0	117
103	Microglia convert aggregated amyloid- \hat{l}^2 into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 2014, 21, 582-593.	11.2	219
104	Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Translational Psychiatry, 2014, 4, e406-e406.	4.8	70
105	Growth Factors and Synaptic Plasticity in Relapsing–Remitting Multiple Sclerosis. NeuroMolecular Medicine, 2014, 16, 490-498.	3.4	18
106	Cerebrospinal fluid detection of interleukin- $1\hat{1}^2$ in phase of remission predicts disease progression in multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 32.	7.2	70
107	Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and <scp>A</scp> Izheimer disease. Annals of Neurology, 2014, 76, 813-825.	5.3	91
108	A Global Immune Deficit in Alzheimer's Disease and Mild Cognitive Impairment Disclosed by a Novel Data Mining Process. Journal of Alzheimer's Disease, 2014, 43, 1199-1213.	2.6	17

#	Article	IF	Citations
109	Abnormal <scp>NMDA</scp> receptor function exacerbates experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2013, 168, 502-517.	5.4	39
110	Classical and unconventional pathways of vesicular release in microglia. Glia, 2013, 61, 1003-1017.	4.9	72
111	Proteomic identification of aldolase A as an autoantibody target in patients with atypical movement disorders. Neurological Sciences, 2013, 34, 313-320.	1.9	15
112	Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia. Gene Therapy, 2013, 20, 487-496.	4.5	19
113	Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain, 2013, 136, 1048-1066.	7.6	100
114	Synaptic Plasticity and PDGF Signaling Defects Underlie Clinical Progression in Multiple Sclerosis. Journal of Neuroscience, 2013, 33, 19112-19119.	3.6	70
115	Mutational Analysis Identifies Residues Crucial for Homodimerization of Myeloid Differentiation Factor 88 (MyD88) and for Its Function in Immune Cells. Journal of Biological Chemistry, 2013, 288, 30210-30222.	3.4	45
116	Cerebrospinal Fluid Analysis in Immunoglobulin G4-related Hypertrophic Pachymeningitis. Journal of Rheumatology, 2013, 40, 1927-1929.	2.0	42
117	Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. Journal of Leukocyte Biology, 2013, 95, 817-825.	3.3	76
118	Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain. Molecular Imaging, 2012, 11, 7290.2011.00032.	1.4	13
119	Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Annals of Neurology, 2012, 72, 610-624.	5.3	277
120	The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem Cell Research and Therapy, 2012, 3, 3.	5.5	68
121	Microvesicles: Novel Biomarkers for Neurological Disorders. Frontiers in Physiology, 2012, 3, 63.	2.8	90
122	Microglial microvesicle secretion and intercellular signaling. Frontiers in Physiology, 2012, 3, 149.	2.8	149
123	Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2012, 165, 861-869.	5.4	67
124	Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. Journal of Neuroimmunology, 2012, 245, 93-97.	2.3	28
125	Interleukinâ€1β causes synaptic hyperexcitability in multiple sclerosis. Annals of Neurology, 2012, 71, 76-83.	5.3	178
126	Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 1301-1312.	3.0	54

#	Article	IF	Citations
127	Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2011, 25, 947-956.	4.1	90
128	Cannabinoid CB1 receptors regulate neuronal TNF- \hat{l}_{\pm} effects in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2011, 25, 1242-1248.	4.1	64
129	Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies. Multiple Sclerosis International, 2011, 2011, 1-9.	0.8	52
130	In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Features of Embryonic AspM Expressing Cells. PLoS ONE, 2011, 6, e19419.	2.5	15
131	2D immunomic approach for the study of IgG autoantibodies in the experimental model of multiple sclerosis. Journal of Neuroimmunology, 2011, 232, 63-67.	2.3	2
132	Neuromyelitis optica: Concepts in evolution. Journal of Neuroimmunology, 2011, 231, 100-104.	2.3	18
133	Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers. Multiple Sclerosis Journal, 2011, 17, 43-56.	3.0	36
134	T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients. PLoS ONE, 2011, 6, e21386.	2.5	64
135	Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. Journal of Neuroimmunology, 2010, 220, 52-63.	2.3	88
136	Altered miRNA expression in T regulatory cells in course of multiple sclerosis. Journal of Neuroimmunology, 2010, 226, 165-171.	2.3	188
137	The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death and Differentiation, 2010, 17, 1083-1091.	11.2	161
138	Konsensusprotokoll zur Standardisierung von Entnahme und Biobanking des Liquor cerebrospinalis / A consensus protocol for the standardisation of cerebrospinal fluid collection and biobanking. Laboratoriums Medizin, 2010, 34, 1-12.	0.6	3
139	IL-17– and IFN-γ–Secreting Foxp3+ T Cells Infiltrate the Target Tissue in Experimental Autoimmunity. Journal of Immunology, 2010, 185, 7467-7473.	0.8	61
140	Gene therapy of multiple sclerosis. , 2010, , 65-78.		0
141	Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis. Molecular and Cellular Neurosciences, 2010, 43, 268-280.	2.2	34
142	Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2010, 24, 1379-1385.	4.1	26
143	Inflammation Triggers Synaptic Alteration and Degeneration in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2009, 29, 3442-3452.	3.6	331
144	Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients. Multiple Sclerosis Journal, 2009, 15, 1153-1163.	3.0	63

#	Article	IF	Citations
145	Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2009, 36, 51-59.	4.4	108
146	Administration of a monomeric CCL2 variant to EAE mice inhibits inflammatory cell recruitment and protects from demyelination and axonal loss. Journal of Neuroimmunology, 2009, 209, 33-39.	2.3	21
147	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1374-1374.	7.8	2
148	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1043-1054.	7.8	499
149	Animal Models of Multiple Sclerosis. Methods in Molecular Biology, 2009, 549, 157-173.	0.9	103
150	Definition of non-responders: biological markers. Neurological Sciences, 2008, 29, 214-215.	1.9	6
151	IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Therapy, 2008, 15, 504-515.	4.5	101
152	Absence of an intrathecal immune reaction to a helper-dependent adenoviral vector delivered into the cerebrospinal fluid of non-human primates. Gene Therapy, 2008, 15, 233-238.	4.5	18
153	Dendritic cells loaded with apoptotic oligodendrocytes as a source of myelin T-cell epitopes in multiple sclerosis. Clinical Immunology, 2008, 129, 286-294.	3.2	3
154	Radiobinding assay for detecting autoantibodies to single epitopes. Journal of Immunological Methods, 2008, 336, 127-134.	1.4	6
155	Early relapses after the first dose of natalizumab in active multiple sclerosis patients. Multiple Sclerosis Journal, 2008, 14, 1137-1138.	3.0	11
156	The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain, 2007, 130, 2543-2553.	7.6	185
157	HSV-1-mediated IL-1 receptor antagonist gene therapy ameliorates MOG35–55-induced experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Therapy, 2007, 14, 93-98.	4.5	43
158	Multifaceted aspects of inflammation in multiple sclerosis: The role of microglia. Journal of Neuroimmunology, 2007, 191, 39-44.	2.3	79
159	Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurology, The, 2006, 5, 343-354.	10.2	246
160	Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436, 266-271.	27.8	756
161	Immunological patterns identifying disease course and evolution in multiple sclerosis patients. Journal of Neuroimmunology, 2005, 165, 192-200.	2.3	38
162	Detection of TNF and TNF Receptor mRNA in Cells and Tissues. , 2004, 98, 059-072.		0

#	Article	IF	CITATIONS
163	α-Lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2004, 148, 146-153.	2.3	118
164	A nitric oxide releasing derivative of flurbiprofen inhibits experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2004, 150, 10-19.	2.3	24
165	Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Current Opinion in Neurology, 2004, 17, 247-255.	3.6	64
166	Gene therapy for autoimmune diseases. Current Opinion in Molecular Therapeutics, 2004, 6, 525-36.	2.8	5
167	Activation of invariant NKT cells by αGalCer administration protects mice from MOG35–55-induced EAE: critical roles for administration route and IFN-γ. European Journal of Immunology, 2003, 33, 1830-1838.	2.9	132
168	Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 2003, 422, 688-694.	27.8	1,057
169	Vaccination with amyloid-beta peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain, 2003, 126, 285-291.	7.6	109
170	beta endorphin concentrations in PBMC of patients with different clinical phenotypes of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 495-497.	1.9	14
171	The therapeutic use of gene therapy in inflammatory demyelinating diseases of the central nervous system. Current Opinion in Neurology, 2003, 16, 385-392.	3.6	8
172	The therapeutic use of gene therapy in inflammatory demyelinating diseases of the central nervous system. Current Opinion in Neurology, 2003, 16, 385-392.	3.6	7
173	Gene Therapy-Mediated Modulation of Immune Processes in the Central Nervous System. Current Pharmaceutical Design, 2003, 9, 2002-2008.	1.9	13
174	Cytokine Gene Delivery into the Central Nervous System Using Intrathecally Injected Nonreplicative Viral Vectors. Methods in Molecular Biology, 2003, , 288-289.	0.9	13
175	Cytokine Gene Delivery into the Central Nervous System Using Intrathecally Injected Nonreplicative Viral Vectors., 2003, 215, 279-290.		35
176	The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends in Immunology, 2001, 22, 483-490.	6.8	61
177	Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing–remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Therapy, 2001, 8, 13-19.	4.5	80
178	Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Therapy, 2001, 8, 1207-1213.	4.5	114
179	Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. Journal of Neuroimmunology, 2001, 115, 192-198.	2.3	158
180	Delivery to the Central Nervous System of a Nonreplicative Herpes Simplex Type 1 Vector Engineered with the Interleukin 4 Gene Protects Rhesus Monkeys from Hyperacute Autoimmune Encephalomyelitis. Human Gene Therapy, 2001, 12, 905-920.	2.7	57

#	Article	IF	CITATIONS
181	Intrathecal Delivery of IFN- \hat{I}^3 Protects C57BL/6 Mice from Chronic-Progressive Experimental Autoimmune Encephalomyelitis by Increasing Apoptosis of Central Nervous System-Infiltrating Lymphocytes. Journal of Immunology, 2001, 167, 1821-1829.	0.8	182
182	\hat{l}^2 -Endorphin Concentrations in Peripheral Blood Mononuclear Cells of Patients With Multiple Sclerosis. Archives of Neurology, 2000, 57, 1178.	4.5	26
183	Cytokine therapy in immune-mediated demyelinating diseases of the central nervous system: a novel gene therapy approach. Journal of Neuroimmunology, 2000, 107, 184-190.	2.3	43
184	Cytokines and immunity in multiple sclerosis: the dual signal hypothesis. Journal of Neuroimmunology, 2000, 109, 3-9.	2.3	60
185	Interferon- \hat{l}^2 treatment in multiple sclerosis patients decreases the number of circulating T cells producing interferon- \hat{l}^3 and interleukin-4. Journal of Neuroimmunology, 2000, 111, 86-92.	2.3	67
186	Leukocyte Recruitment in the Cerebrospinal Fluid of Mice with Experimental Meningitis Is Inhibited by an Antibody to Junctional Adhesion Molecule (Jam). Journal of Experimental Medicine, 1999, 190, 1351-1356.	8.5	268
187	Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magnetic Resonance Imaging, 1999, 17, 1521-1523.	1.8	69
188	Adult T-Cell Leukemia/Lymphoma in Northeastern Brazil: A Clinical, Histopathologic, and Molecular Study. Journal of Acquired Immune Deficiency Syndromes (1999), 1999, 21, 65-71.	2.1	20
189	Human T-cell lymphotropic virus type-l infection in the severe combined immunodeficiency mouse., 1996, 49, 77-82.		1
190	Absence of central nervous system pathology in severe combined immunodeficiency mice intraperitoneally injected with peripheral blood lymphocytes from multiple sclerosis patients. Journal of Neuroimmunology, 1994, 55, 213-217.	2.3	5
191	HTLV-I hu-SCID Mouse in the Study of HTLV-I Neurotropism Annals of the New York Academy of Sciences, 1994, 724, 422-425.	3.8	0
192	Heterogeneity of autoantibodies in stiffâ€man syndrome. Annals of Neurology, 1993, 34, 57-64.	5.3	121
193	Absence of oligoclonally restricted immunoglobulins in tears from multiple sclerosis patients. Journal of Neuroimmunology, 1993, 44, 149-155.	2.3	16
194	The ependymal route for central nervous system gene therapy. , 0, , 257-268.		0
195	Tissue regeneration and repair in multiple sclerosis: the role of neural stem cells. , 0, , 60-66.		0
196	Non-Communicable Neurological Disorders and Neuroinflammation. Frontiers in Immunology, 0, 13 , .	4.8	1