
Yijiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11375308/publications.pdf Version: 2024-02-01

Ушалс Гш

#	Article	IF	CITATIONS
1	Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Progress in Materials Science, 2022, 124, 100888.	32.8	47
2	Surface ligand engineering renders tube-like perovskite nanocrystal composites with outstanding polar organic solvent-tolerance and strong emission. Chemical Engineering Journal, 2022, 434, 133866.	12.7	7
3	Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as bifunctional electrocatalyst for rechargeable zinc-air batteries. Microporous and Mesoporous Materials, 2022, 336, 111850.	4.4	4
4	Flexible Solid-State Supercapacitor with High Energy Density Enabled by N/B/O-Codoped Porous Carbon Nanoparticles and Imidazolium-Based Gel Polymer Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 5548-5558.	6.7	13
5	In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15, 7759-7768.	10.4	25
6	Ultrastable highly-emissive amphiphilic perovskite nanocrystal composites via the synergy of polymer-grafted silica nanoreactor and surface ligand engineering for white light-emitting diode. Nano Energy, 2022, 98, 107321.	16.0	7
7	Surface engineering of ZIF-L renders multidoped leaf-like porous carbon nanosheets for highly efficient oxygen reduction reaction in both alkaline and acidic media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129417.	4.7	4
8	Iron-nickel alloy nanoparticles encapsulated in nitrogen-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Journal of Colloid and Interface Science, 2022, 625, 278-288.	9.4	5
9	A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy, 2021, 79, 105487.	16.0	99
10	Rechargeable Zn–Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst. Nano Letters, 2021, 21, 3098-3105.	9.1	95
11	Flexible Solid-State Supercapacitors with Outstanding Capacitive Performance Enabled by N/B-Codoped Porous Carbon Nanosheets. ACS Applied Energy Materials, 2021, 4, 7552-7561.	5.1	12
12	A highly sensitive chemosensor for rapid recognition of Cu2+ and HSO3â~' in 100% aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120215.	3.9	4
13	Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano, 2020, 14, 12491-12521.	14.6	59
14	Stimuli-responsive Janus mesoporous nanosheets towards robust interfacial emulsification and catalysis. Materials Horizons, 2020, 7, 3242-3249.	12.2	29
15	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	38.1	269
16	Dual-Shelled Multidoped Hollow Carbon Nanocages with Hierarchical Porosity for High-Performance Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Nano Letters, 2020, 20, 5639-5645.	9.1	98
17	Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors. Nano Letters, 2019, 19, 9019-9028.	9.1	70
18	Benzoxazine monomers containing triphenylimidazole: Polymerization of monomers and properties of polybenzoxazines. European Polymer Journal, 2019, 121, 109347.	5.4	6

Yijiang Liu

#	Article	IF	CITATIONS
19	Preparation of SiO2@TiO2 composite nanosheets and their application in photocatalytic degradation of malachite green at emulsion interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123858.	4.7	27
20	Nitrogen and iron codoped porous carbon spheres derived from tetrazine-based polyindole as efficient catalyst for oxygen reduction reaction in acidic electrolytes. Journal of Power Sources, 2019, 434, 226738.	7.8	12
21	Nitrogen/Cobalt Coâ€doped Mesoporous Carbon Microspheres Derived from Amorphous Metalâ€Organic Frameworks as a Catalyst for the Oxygen Reduction Reaction in Both Alkaline and Acidic Electrolytes. ChemElectroChem, 2019, 6, 2546-2552.	3.4	15
22	A dual-function colorimetric probe based on Carbazole-Cyanine dyad for highly sensitive recognition of cyanide and hypochlorous acid in aqueous media. Talanta, 2019, 202, 329-335.	5.5	38
23	MnO ₂ Nanostructures Deposited on Graphene-Like Porous Carbon Nanosheets for High-Rate Performance and High-Energy Density Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 3101-3110.	6.7	66
24	Novel fluorescent probe bearing triarylimidazole and pyridine moieties for the rapid and naked-eye recognition of Cu 2+. Tetrahedron Letters, 2018, 59, 108-112.	1.4	9
25	N-doped and N/Fe-codoped porous carbon spheres derived from tetrazine-based polypyrrole as efficient electrocatalysts for the oxygen reduction reaction. Applied Catalysis A: General, 2018, 559, 102-111.	4.3	18
26	A novel "turn-on―fluorescent probe based on triphenylimidazole-hemicyanine dyad for colorimetric detection of CNâ^' in 100% aqueous solution. Journal of Hazardous Materials, 2018, 344, 875-882.	12.4	32
27	A Porous Organic Poly(triphenylimidazole) Decorated with Palladium Nanoparticles for the Cyanation of Aryl Iodides. Chemistry - an Asian Journal, 2018, 13, 2708-2713.	3.3	10
28	Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. Journal of Power Sources, 2018, 397, 1-10.	7.8	194
29	A highly selective fluorescent probe for colorimetric recognition of cyanide anion based on heptamethine cyanine-triphenylamine conjugate. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 151-158.	3.9	26
30	Near-infrared chemodosimetric probes based on heptamethine cyanine dyes for the "naked-eye― detection of cyanide in aqueous media. Journal of Luminescence, 2017, 185, 286-291.	3.1	18
31	Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes for supercapacitor applications. Journal of Materials Science, 2017, 52, 7781-7793.	3.7	35
32	A new "on-off-on―fluorescent probe containing triarylimidazole chromophore to sequentially detect copper and sulfide ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 256-262.	3.9	31
33	A novel "turn-on―fluorescence probe based on azoaniline-arylimidazole dyad for the detection of Cu 2+. Dyes and Pigments, 2017, 142, 293-299.	3.7	32
34	Synthesis and photovoltaic properties of the copolymers containing zinc porphyrin derivatives as pendant groups. Synthetic Metals, 2017, 223, 205-211.	3.9	9
35	Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. Journal of Power Sources, 2017, 341, 309-317.	7.8	408
36	Polymeric Janus Nanosheets by Template RAFT Polymerization. Macromolecules, 2017, 50, 9042-9047.	4.8	16

Yijiang Liu

#	Article	IF	CITATIONS
37	Preparation of Au@silica Janus nanosheets and their catalytic application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 613-620.	4.7	27
38	Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors. Carbon, 2017, 122, 538-546.	10.3	91
39	Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of Colloid and Interface Science, 2017, 490, 357-364.	9.4	61
40	Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochimica Acta, 2016, 208, 55-63.	5.2	118
41	Porous N-Doped Carbon Prepared from Triazine-Based Polypyrrole Network: A Highly Efficient Metal-Free Catalyst for Oxygen Reduction Reaction in Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 28615-28623.	8.0	47
42	Janus colloidal copolymers. Science China Materials, 2015, 58, 961-968.	6.3	10
43	Flexible responsive Janus nanosheets. Chemical Communications, 2015, 51, 3562-3565.	4.1	56
44	Janus nanosheets by emulsion interfacial crosslinking of reactive surfactants. Colloid and Polymer Science, 2015, 293, 2609-2615.	2.1	8
45	Amine/acid composite Janus nanosheets. Science China Materials, 2015, 58, 126-131.	6.3	7
46	A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta, 2012, 80, 219-226.	5.2	44
47	Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569.	2.6	33
48	The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2011, 88, 75-83.	3.7	41
49	Synthesis and characterization of porphyrin-terthiophene and oligothiophene π-conjugated copolymers for polymer solar cells. European Polymer Journal, 2010, 46, 1084-1092.	5.4	56
50	Synthesis and photovoltaic properties of polythiophene stars with porphyrin core. Journal of Materials Chemistry, 2010, 20, 1140-1146.	6.7	56
51	Efficient triphenylamine dyes for solar cells: Effects of alkyl-substituents and π-conjugated thiophene unit. Dyes and Pigments, 2009, 83, 187-197.	3.7	118
52	Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chemical Communications, 2009, , 2499.	4.1	97