Richard Horuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11372282/publications.pdf

Version: 2024-02-01

38742 38395 12,675 110 50 95 citations h-index g-index papers 114 114 114 10382 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell, 1996, 86, 367-377.	28.9	2,964
2	Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell, 1993, 72, 415-425.	28.9	798
3	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	16.0	735
4	CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Current Biology, 1997, 7, 112-121.	3.9	486
5	Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 $\hat{l}\pm$ is mediated by the chemokine receptor CXCR4. Current Biology, 1998, 8, 595-598.	3.9	428
6	Chemokine receptors. Cytokine and Growth Factor Reviews, 2001, 12, 313-335.	7.2	372
7	Chemokine and chemokine receptor expression in the central nervous system. Journal of NeuroVirology, 1999, 5, 13-26.	2.1	274
8	Chemokine/Chemokine Receptor Nomenclature. Journal of Interferon and Cytokine Research, 2002, 22, 1067-1068.	1.2	273
9	Chemokine receptor antagonists: overcoming developmental hurdles. Nature Reviews Drug Discovery, 2009, 8, 23-33.	46.4	267
10	Regulation of Human Chemokine Receptors CXCR4. Journal of Biological Chemistry, 1997, 272, 28726-28731.	3.4	260
11	CCR1+/CCR5+ Mononuclear Phagocytes Accumulate in the Central Nervous System of Patients with Multiple Sclerosis. American Journal of Pathology, 2001, 159, 1701-1710.	3.8	238
12	Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+T cells. Blood, 2001, 97, 1144-1146.	1.4	228
13	I want a new drug: G-protein-coupled receptors in drug development. Drug Discovery Today, 2006, 11, 481-493.	6.4	204
14	Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends in Pharmacological Sciences, 2002, 23, 459-467.	8.7	201
15	An Orphan Seven-Transmembrane Domain Receptor Expressed Widely in the Brain Functions as a Coreceptor for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus. Journal of Virology, 1998, 72, 7934-7940.	3.4	183
16	Identification and Characterization of a Potent, Selective, and Orally Active Antagonist of the CC Chemokine Receptor-1. Journal of Biological Chemistry, 2000, 275, 19000-19008.	3.4	177
17	The interleukin-8-receptor family: from chemokines to malaria. Trends in Immunology, 1994, 15, 169-174.	7.5	171
18	A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. Journal of Clinical Investigation, 2002, 109, 251-259.	8.2	165

#	Article	IF	CITATIONS
19	The CC Chemokine I-309 Inhibits CCR8-dependent Infection by Diverse HIV-1 Strains. Journal of Biological Chemistry, 1998, 273, 386-391.	3.4	159
20	Molecular properties of the chemokine receptor family. Trends in Pharmacological Sciences, 1994, 15, 159-165.	8.7	156
21	MIP-1α utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Experimental Hematology, 2005, 33, 272-278.	0.4	148
22	CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney International, 2004, 66, 2264-2278.	5 . 2	129
23	Genetic Subtype-Independent Inhibition of Human Immunodeficiency Virus Type 1 Replication by CC and CXC Chemokines. Journal of Virology, 1998, 72, 396-404.	3.4	128
24	Chemokine Receptor CCR1 But Not CCR5 Mediates Leukocyte Recruitment and Subsequent Renal Fibrosis after Unilateral Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2004, 15, 337-347.	6.1	124
25	Identification and Characterization of Small Molecule Functional Antagonists of the CCR1 Chemokine Receptor. Journal of Biological Chemistry, 1998, 273, 15687-15692.	3.4	123
26	A Non-peptide Functional Antagonist of the CCR1 Chemokine Receptor Is Effective in Rat Heart Transplant Rejection. Journal of Biological Chemistry, 2001, 276, 4199-4204.	3.4	121
27	Human Immunodeficiency Virus-1 Entry Into Purified Blood Dendritic Cells Through CC and CXC Chemokine Coreceptors. Blood, 1997, 90, 1379-1386.	1.4	119
28	The clinical potential of chemokine receptor antagonists. , 2005, 107, 44-58.		107
28		6.1	107
	The clinical potential of chemokine receptor antagonists. , 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus	6.1 5.0	
29	The clinical potential of chemokine receptor antagonists. , 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513.		105
30	The clinical potential of chemokine receptor antagonists., 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513. Chemokine receptor antagonists: Part 1. Expert Opinion on Therapeutic Patents, 2009, 19, 39-58. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of	5.0	105
29 30 31	The clinical potential of chemokine receptor antagonists., 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513. Chemokine receptor antagonists: Part 1. Expert Opinion on Therapeutic Patents, 2009, 19, 39-58. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clinical and Experimental Metastasis, 2006, 23, 291-300. The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry, 1993, 32,	5.0 3.3	105 105 103
29 30 31 32	The clinical potential of chemokine receptor antagonists., 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513. Chemokine receptor antagonists: Part 1. Expert Opinion on Therapeutic Patents, 2009, 19, 39-58. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clinical and Experimental Metastasis, 2006, 23, 291-300. The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry, 1993, 32, 5733-5738. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. Journal	5.0 3.3 2.5	105 105 103 99
29 30 31 32	The clinical potential of chemokine receptor antagonists., 2005, 107, 44-58. Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513. Chemokine receptor antagonists: Part 1. Expert Opinion on Therapeutic Patents, 2009, 19, 39-58. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clinical and Experimental Metastasis, 2006, 23, 291-300. The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry, 1993, 32, 5733-5738. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. Journal of Clinical Investigation, 2002, 109, 251-259. Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport	5.0 3.3 2.5	105 105 103 99

3

#	Article	IF	CITATIONS
37	Predictions of CCR1 Chemokine Receptor Structure and BX 471 Antagonist Binding Followed by Experimental Validation. Journal of Biological Chemistry, 2006, 281, 27613-27620.	3.4	88
38	Leukocytes Induce Epithelial to Mesenchymal Transition after Unilateral Ureteral Obstruction in Neonatal Mice. American Journal of Pathology, 2007, 171, 861-871.	3.8	87
39	The Promiscuous Chemokine Binding Profile of the Duffy Antigen/Receptor for Chemokines Is Primarily Localized to Sequences in the Amino-terminal Domain. Journal of Biological Chemistry, 1995, 270, 26239-26245.	3.4	86
40	The Solution Structure of Melanoma Growth Stimulating Activity. Journal of Molecular Biology, 1994, 242, 252-270.	4.2	83
41	CCR1-specific non-peptide antagonist: efficacy in a rabbit allograft rejection model. Immunology Letters, 2001, 76, 193-201.	2.5	80
42	Chemokine Receptor CCR1 Regulates Inflammatory Cell Infiltration after Renal Ischemia-Reperfusion Injury. Journal of Immunology, 2008, 181, 8670-8676.	0.8	79
43	Chemokine receptors and HIV-1: the fusion of two major research fields. Trends in Immunology, 1999, 20, 89-94.	7.5	78
44	The biology and biochemistry of the glucose transporter. BBA - Biomembranes, 1988, 947, 571-590.	8.0	77
45	Why CCR2 and CCR5 Blockade Failed and Why CCR1 Blockade Might Still Be Effective in the Treatment of Rheumatoid Arthritis. PLoS ONE, 2011, 6, e21772.	2.5	72
46	Chemokines beyond inflammation. Nature, 1998, 393, 524-525.	27.8	67
47	Discovery of Novel Non-Peptide CCR1 Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 4680-4694.	6.4	59
48	CC Chemokine Receptor 8 in the Central Nervous System Is Associated with Phagocytic Macrophages. American Journal of Pathology, 2003, 162, 427-438.	3.8	59
49	Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opinion on Drug Discovery, 2014, 9, 467-483.	5.0	59
50	Chemokine Receptor Antagonists. , 2000, 20, 155-168.		56
51	CCR5 Deficiency Aggravates Crescentic Glomerulonephritis in Mice. Journal of Immunology, 2008, 181, 6546-6556.	0.8	55
52	A Mutant of Melanoma Growth Stimulating Activity Does Not Activate Neutrophils but Blocks Erythrocyte Invasion by Malaria. Journal of Biological Chemistry, 1995, 270, 11472-11476.	3.4	53
53	Elucidation of Binding Sites of Dual Antagonists in the Human Chemokine Receptors CCR2 and CCR5. Molecular Pharmacology, 2009, 75, 1325-1336.	2.3	52
54	Species selectivity of a small molecule antagonist for the CCR1 chemokine receptor. European Journal of Pharmacology, 2000, 389, 41-49.	3.5	50

#	Article	IF	CITATIONS
55	CCR1 is an early and specific marker of Alzheimer's disease. Annals of Neurology, 2003, 54, 638-646.	5.3	50
56	The Duffy Antigen Receptor for Chemokines DARC/ACKR1. Frontiers in Immunology, 2015, 6, 279.	4.8	49
57	CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1500, 227-240.	3.8	48
58	The Chemokine, CCL3, and Its Receptor, CCR1, Mediate Thoracic Radiation–Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 127-135.	2.9	47
59	Development and evaluation of pharmacological agents targeting chemokine receptors. Methods, 2003, 29, 369-375.	3.8	41
60	CCR1 antagonists in clinical development. Expert Opinion on Investigational Drugs, 2005, 14, 785-796.	4.1	40
61	Expression and Coreceptor Function of APJ for Primate Immunodeficiency Viruses. Virology, 2000, 276, 435-444.	2.4	39
62	Promiscuous drugs as therapeutics for chemokine receptors. Expert Reviews in Molecular Medicine, 2009, 11, e1.	3.9	38
63	Small molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. British Journal of Pharmacology, 2012, 166, 912-923.	5.4	38
64	BX471: A CCR1 Antagonist with Anti-Inflammatory Activity in Man. Mini-Reviews in Medicinal Chemistry, 2005, 5, 791-804.	2.4	36
65	Structure Function Differences in Nonpeptide CCR1 Antagonists for Human and Mouse CCR1. Journal of Immunology, 2003, 170, 1910-1916.	0.8	29
66	Identification and Characterization of a Potent, Selective Nonpeptide Agonist of the CC Chemokine Receptor CCR8. Molecular Pharmacology, 2006, 69, 309-316.	2.3	29
67	Expression, purification and in vitro functional reconstitution of the chemokine receptor CCR1. Protein Expression and Purification, 2009, 66, 73-81.	1.3	28
68	A CCR1 antagonist prevents the development of experimental autoimmune myocarditis in association with T cell inactivation. Journal of Molecular and Cellular Cardiology, 2006, 40, 853-861.	1.9	25
69	Treatment with BX471, a CC chemokine receptor 1 antagonist, attenuates systemic inflammatory response during sepsis. American Journal of Physiology - Renal Physiology, 2007, 292, G1173-G1180.	3.4	25
70	Cell-Autonomous Regulation of Neutrophil Migration by the D6 Chemokine Decoy Receptor. Journal of Immunology, 2013, 190, 6450-6456.	0.8	25
71	Identification and characterization of the rat adipocyte glucose transporter by photoaffinity crosslinking. FEBS Letters, 1983, 164, 261-266.	2.8	23
72	Treatment With BX471, a Nonpeptide CCR1 Antagonist, Protects Mice Against Acute Pancreatitis-Associated Lung Injury by Modulating Neutrophil Recruitment. Pancreas, 2007, 34, 233-241.	1.1	22

#	Article	IF	Citations
73	Chapter 13 Modeling Small Molecule–Compound Binding to Gâ€Protein–Coupled Receptors. Methods in Enzymology, 2009, 460, 263-288.	1.0	22
74	Chemokines: Molecular double agents. Current Biology, 1996, 6, 1581-1582.	3.9	21
75	[10] lodination of chemokines for use in receptor binding analysis. Methods in Enzymology, 1997, 288, 134-148.	1.0	20
76	Small Molecule Antagonists of Chemokine Receptors - is Promiscuity a Virtue?. Current Topics in Medicinal Chemistry, 2010, 10, 1351-1358.	2.1	20
77	Rapid and effective transfer of integral membrane proteins from isoelectric focusing gels to nitrocellulose membranes. Analytical Biochemistry, 1986, 157, 123-128.	2.4	19
78	[3] Chemokine receptors in developing human brain. Methods in Enzymology, 1997, 288, 27-38.	1.0	17
79	Noncompetitive, Chemokine-mediated Inhibition of Basic Fibroblast Growth Factor-induced Endothelial Cell Proliferation. Journal of Biological Chemistry, 1998, 273, 7911-7919.	3.4	15
80	An improved and simplified apparatus for protein extraction and concentration from gel slices, using moving boundary electrophoresis. Electrophoresis, 1983, 4, 335-337.	2.4	13
81	Partial purification and characterization of the glucagon receptor. FEBS Letters, 1983, 155, 213-217.	2.8	13
82	CXCR 3 antagonist VUF 10085 binds to an intrahelical site distinct from that of the broad spectrum antagonist TAK â€₹79. British Journal of Pharmacology, 2015, 172, 1822-1833.	5.4	13
83	Post-binding events in insulin action. Molecular and Cellular Endocrinology, 1985, 42, 1-20.	3.2	12
84	Chemokines. Scientific World Journal, The, 2007, 7, 224-232.	2.1	12
85	Gene activation therapy: from the BLV model to HAM/TSP patients. Frontiers in Bioscience - Elite, 2009, 1, 205.	1.8	12
86	Chapter 9 The Duffy Antigen Receptor for Chemokines. Methods in Enzymology, 2009, 461, 191-206.	1.0	10
87	Human Immunodeficiency Virus-1 Entry Into Purified Blood Dendritic Cells Through CC and CXC Chemokine Coreceptors. Blood, 1997, 90, 1379-1386.	1.4	8
88	Photoaffinity labeling of the glucagon receptor with a new glucagon analog. FEBS Journal, 1984, 141, 63-67.	0.2	7
89	Post binding events in insulin action. Diabetes/metabolism Reviews, 1985, 1, 59-97.	0.3	6
90	Duffy antigen inhibitors: useful therapeutics for malaria?. Trends in Parasitology, 2010, 26, 329-333.	3.3	6

#	Article	IF	Citations
91	Review Biologicals & Dinion on Therapeutic Patents, 1995, 5, 1185-1200.	5.0	5
92	Chemokine Receptor Antagonists: From the Bench to the Clinic. , 2006, , 371-402.		5
93	Expression, purification, and characterization of Escherichia coli-derived recombinant human melanoma growth stimulating activity. Methods in Enzymology, 1997, 287, 3-12.	1.0	3
94	Possible mechanism for the generation of the HIV-1-resistant form of the CCR5 \hat{l} "32 mutant chemokine receptor. Current Biology, 1997, 7, R529-R530.	3.9	3
95	<i>In vitro</i> screening for chemokine antagonists. Expert Opinion on Drug Discovery, 2009, 4, 1017-1034.	5.0	3
96	Alanine scan mutagenesis of chemokines. Methods in Enzymology, 1997, 287, 59-69.	1.0	2
97	[20] Adenylate cyclase assays to measure chemokine receptor function. Methods in Enzymology, 1997, 288, 326-339.	1.0	2
98	Controlling leukocyte trafficking in disease. , 2006, , 181-196.		1
99	Chemokines and Chemokine Receptors in the Brain. , 1999, , 295-312.		1
100	Pharmaceutical Targeting of Chemokine Receptors., 2007,, 371-390.		1
101	4-Azetidinyl-1-heteroatom linked cyclohexane antagonists of CCR2: patent evaluation. Expert Opinion on Therapeutic Patents, 2011, 21, 1275-1280.	5.0	O
102	Chemokine Receptors in Allergy, Inflammation, and Infectious Disease. Topics in Medicinal Chemistry, 2014, , 1-39.	0.8	0
103	CXCR4 Chemokine Receptor., 2007, , 1-10.		0
104	Chemokine receptor CCR1. The AFCS-nature Molecule Pages, 0, , .	0.2	0
105	Glucagon Receptors and Their Functions. , 1985, , 251-279.		0
106	Chemokine Receptor CCR1., 2016, , 1-9.		0
107	CCR1., 2016, , 260-268.		0
108	Chemokine Receptor CCR1., 2018, , 1065-1074.		0

#	ARTICLE	IF	CITATIONS
109	The Duffy Antigen Receptor for Chemokines. , 2020, , 125-144.		0
110	Chemokine Receptors. , 2021, , 444-450.		0