
Samuel C Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the liver immune microenvironment in liver biopsies from patients with chronic HBV infection. JHEP Reports, 2022, 4, 100388.	4.9	19
2	Single-Cell Protein Profiling by Microdroplet Barcoding and Next-Generation Sequencing. Methods in Molecular Biology, 2022, 2386, 101-111.	0.9	0
3	Robotic automation of droplet microfluidics. Biomicrofluidics, 2022, 16, 014102.	2.4	5
4	Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets. ACS Nano, 2020, 14, 185-195.	14.6	38
5	Uniform, Large-Area, Highly Ordered Peptoid Monolayer and Bilayer Films for Sensing Applications. Langmuir, 2019, 35, 13671-13680.	3.5	20
6	Surface characterization and free thyroid hormones response of chemically modified poly(ethylene) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

7	Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis. Analytical Chemistry, 2018, 90, 1273-1279.	6.5	100
8	Particle-Templated Emulsification for Microfluidics-Free Digital Biology. Analytical Chemistry, 2018, 90, 9813-9820.	6.5	52
9	Measurement of copy number variation in single cancer cells using rapid-emulsification digital droplet MDA. Microsystems and Nanoengineering, 2017, 3, .	7.0	13
10	Efficient extraction of oil from droplet microfluidic emulsions. Biomicrofluidics, 2017, 11, 034111.	2.4	15
11	Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Scientific Reports, 2017, 7, 44447.	3.3	217
12	Bulk double emulsification for flow cytometric analysis of microfluidic droplets. Analyst, The, 2017, 142, 4618-4622.	3.5	23
13	Nanotip Ambient Ionization Mass Spectrometry. Analytical Chemistry, 2016, 88, 5542-5548.	6.5	23
14	Performance of chemically modified plastic blood collection tubes. Clinical Biochemistry, 2016, 49, 90-99.	1.9	3
15	Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics, 2015, 4, 455-466.	3.7	44
16	Transforming Plastic Surfaces with Electrophilic Backbones from Hydrophobic to Hydrophilic. ACS Applied Materials & Interfaces, 2015, 7, 1925-1931.	8.0	22
17	Patterning microfluidic device wettability with spatially-controlled plasma oxidation. Lab on A Chip, 2015, 15, 3163-3169.	6.0	67
18	Microdroplet fusion mass spectrometry for fast reaction kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3898-3903.	7.1	197

SAMUEL C KIM

#	Article	IF	CITATIONS
19	Lysis of a Single Cyanobacterium for Whole Genome Amplification. Micromachines, 2013, 4, 321-332.	2.9	12
20	Polarization-Controlled Photoswitching Resolves Dipole Directions with Subwavelength Resolution. Physical Review Letters, 2012, 109, 248101.	7.8	7
21	Microfluidic Platforms for Single-Cell Analysis. Annual Review of Biomedical Engineering, 2010, 12, 187-201.	12.3	287
22	Single-Molecule Spectroscopy Using Microfluidic Platforms. Methods in Enzymology, 2010, 472, 119-132.	1.0	6
23	FRET-Based Measurement of GPCR Conformational Changes. Methods in Molecular Biology, 2009, 552, 253-268.	0.9	14
24	Structure and Conformational Changes in the C-terminal Domain of the β2-Adrenoceptor. Journal of Biological Chemistry, 2007, 282, 13895-13905.	3.4	141
25	Microfluidic separation and capture of analytes for single-molecule spectroscopy. Lab on A Chip, 2007, 7, 1663.	6.0	19
26	Use of a Mixture of <i>n</i> -Dodecyl-β- <scp>d</scp> -maltoside and Sodium Dodecyl Sulfate in Poly(dimethylsiloxane) Microchips To Suppress Adhesion and Promote Separation of Proteins. Analytical Chemistry, 2007, 79, 9145-9149.	6.5	21
27	Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization. Lab on A Chip, 2006, 6, 369.	6.0	39
28	Coating of poly(dimethylsiloxane) with n-dodecyl-β-d-maltoside to minimize nonspecific protein adsorption. Lab on A Chip, 2005, 5, 1005.	6.0	134