Pier Vincenzo Piazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11366481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for Addiction-like Behavior in the Rat. Science, 2004, 305, 1014-1017.	6.0	1,005
2	Pathophysiological Basis of Vulnerability to Drug Abuse: Role of an Interaction Between Stress, Glucocorticoids, and Dopaminergic Neurons. Annual Review of Pharmacology and Toxicology, 1996, 36, 359-378.	4.2	691
3	Distinct functions of the two isoforms of dopamine D2 receptors. Nature, 2000, 408, 199-203.	13.7	625
4	Maternal Glucocorticoid Secretion Mediates Long-Term Effects of Prenatal Stress. Journal of Neuroscience, 1996, 16, 3943-3949.	1.7	572
5	Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Research, 1990, 514, 22-26.	1.1	544
6	Interaction between glucocorticoid hormones, stress and psychostimulant drugs*. European Journal of Neuroscience, 2002, 16, 387-394.	1.2	368
7	Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Research Reviews, 1997, 25, 359-372.	9.1	343
8	Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Research, 1991, 567, 169-174.	1.1	330
9	Vertical Shifts in Self-Administration Dose–Response Functions Predict a Drug-Vulnerable Phenotype Predisposed to Addiction. Journal of Neuroscience, 2000, 20, 4226-4232.	1.7	321
10	Transition to Addiction Is Associated with a Persistent Impairment in Synaptic Plasticity. Science, 2010, 328, 1709-1712.	6.0	319
11	Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study. Brain Research, 1993, 602, 169-174.	1.1	273
12	Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Research, 1992, 586, 135-139.	1.1	265
13	Social stress increases the acquisition of cocaine self-administration in male and female rats. Brain Research, 1995, 698, 46-52.	1.1	260
14	Evidence for Enhanced Neurobehavioral Vulnerability to Nicotine during Periadolescence in Rats. Journal of Neuroscience, 2003, 23, 4712-4716.	1.7	248
15	Pregnenolone Can Protect the Brain from Cannabis Intoxication. Science, 2014, 343, 94-98.	6.0	247
16	Bimodal control of stimulated food intake by the endocannabinoid system. Nature Neuroscience, 2010, 13, 281-283.	7.1	246
17	Glucocorticoids Can Induce PTSD-Like Memory Impairments in Mice. Science, 2012, 335, 1510-1513.	6.0	244
18	High-Novelty-Preference Rats are Predisposed to Compulsive Cocaine Self-administration. Neuropsychopharmacology, 2011, 36, 569-579.	2.8	227

PIER VINCENZO PIAZZA

#	Article	IF	CITATIONS
19	Abolition and Reversal of Strain Differences in Behavioral Responses to Drugs of Abuse After a Brief Experience. Science, 2000, 289, 463-465.	6.0	218
20	The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neuroscience, 2005, 8, 664-672.	7.1	207
21	Enriched Environment Confers Resistance to 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and Cocaine: Involvement of Dopamine Transporter and Trophic Factors. Journal of Neuroscience, 2003, 23, 10999-11007.	1.7	206
22	The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. European Journal of Neuroscience, 2000, 12, 973-979.	1.2	190
23	Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion. Brain Research, 1992, 598, 343-348.	1.1	187
24	A multistep general theory of transition to addiction. Psychopharmacology, 2013, 229, 387-413.	1.5	172
25	Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. European Journal of Neuroscience, 1998, 10, 3903-3907.	1.2	162
26	The Glucocorticoid Receptor as a Potential Target to Reduce Cocaine Abuse. Journal of Neuroscience, 2003, 23, 4785-4790.	1.7	159
27	Changes in Extracellular Dopamine Induced by Morphine and Cocaine: Crucial Control by D2 Receptors. Journal of Neuroscience, 2002, 22, 3293-3301.	1.7	158
28	Cocaine self-administration increases the incentive motivational properties of the drug in rats. European Journal of Neuroscience, 1999, 11, 2731-2736.	1.2	157
29	Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nature Neuroscience, 2009, 12, 247-249.	7.1	156
30	Pattern of Intake and Drug Craving Predict the Development of Cocaine Addiction-like Behavior in Rats. Biological Psychiatry, 2009, 65, 863-868.	0.7	145
31	Inhibition of corticosterone synthesis by Metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Research, 1994, 658, 259-264.	1.1	136
32	Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Research, 1993, 611, 352-356.	1.1	134
33	Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Research, 1993, 624, 209-215.	1.1	129
34	Individual differences in the psychomotor effects of morphine are predicted by reactivity to novelty and influenced by corticosterone secretion. Brain Research, 1993, 623, 341-344.	1.1	125
35	Repeated corticosterone administration sensitizes the locomotor response to amphetamine. Brain Research, 1992, 584, 309-313.	1.1	113
36	Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity. PLoS ONE, 2012, 7, e42399.	1.1	109

PIER VINCENZO PIAZZA

#	Article	IF	CITATIONS
37	Rats orally self-administer corticosterone. Brain Research, 1993, 622, 315-320.	1.1	96
38	Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. European Journal of Neuroscience, 2004, 19, 1837-1846.	1.2	91
39	The neurosteroid allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens. European Journal of Neuroscience, 2002, 16, 169-173.	1.2	87
40	Life events-induced decrease of corticosteroid type I receptors is associated with reduced corticosterone feedback and enhanced vulnerability to amphetamine self-administration. Brain Research, 1991, 547, 7-20.	1.1	84
41	Animals predisposed to develop amphetamine self-administration show higher susceptibility to develop contextual conditioning of both amphetamine-induced hyperlocomotion and sensitization. Brain Research, 1994, 657, 236-244.	1.1	83
42	Preexposure during or following adolescence differently affects nicotine-rewarding properties in adult rats. Psychopharmacology, 2006, 184, 382-390.	1.5	77
43	Social isolation-induced enhancement of the psychomotor effects of morphine depends on corticosterone secretion. Brain Research, 1994, 640, 136-139.	1.1	76
44	Functional heterogeneity in dopamine release and in the expression of Fos-like proteins within the rat striatal complex. European Journal of Neuroscience, 1999, 11, 1155-1166.	1.2	72
45	Susceptibility to amphetamine-induced place preference is predicted by locomotor response to novelty and amphetamine in the mouse. Psychopharmacology, 2004, 172, 264-270.	1.5	68
46	Psychobiology of cocaine addiction: Contribution of a multi-symptomatic animal model of loss of control. Neuropharmacology, 2014, 76, 437-449.	2.0	64
47	Influence of cue-conditioning on acquisition, maintenance and relapse of cocaine intravenous self-administration. European Journal of Neuroscience, 2002, 15, 1363-1370.	1.2	62
48	Acute pharmacological blockade of corticosterone secretion reverses food restriction-induced sensitization of the locomotor response to cocaine. Brain Research, 1996, 724, 251-255.	1.1	60
49	The CB1 Receptor as the Cornerstone of Exostasis. Neuron, 2017, 93, 1252-1274.	3.8	60
50	Implication of allopregnanolone in the antinociceptive effect of N -palmitoylethanolamide in acute or persistent pain. Pain, 2012, 153, 33-41.	2.0	59
51	Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons. Brain Research, 1993, 622, 311-314.	1.1	49
52	Influence of glucocorticoids on dopaminergic transmission in the rat dorsolateral striatum. European Journal of Neuroscience, 2001, 13, 812-818.	1.2	49
53	The central serotonin _{2B} receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. Journal of Neurochemistry, 2010, 114, 1323-1332.	2.1	48
54	Hippocampal type I and type II corticosteroid receptor affinities are reduced in rats predisposed to develop amphetamine self-administration. Brain Research, 1991, 548, 305-309.	1.1	47

#	Article	IF	CITATIONS
55	Long term neurodevelopmental and behavioral effects of perinatal life events in rats. Neurotoxicity Research, 2001, 3, 65-83.	1.3	46
56	Serotonin2C receptors in the medial prefrontal cortex facilitate cocaine-induced dopamine release in the rat nucleus accumbens. Neuropharmacology, 2009, 56, 507-513.	2.0	46
57	The neurosteroid pregnenolone sulphate increases dopamine release and the dopaminergic response to morphine in the rat nucleus accumbens. European Journal of Neuroscience, 1999, 11, 3757-3760.	1.2	43
58	<i>In vivo</i> evidence that constitutive activity of serotonin _{2C} receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. Journal of Neurochemistry, 2009, 111, 614-623.	2.1	43
59	Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology, 2016, 41, 2192-2205.	2.8	43
60	Individual vulnerability to substance abuse and affective disorders: Role of early environmental influences. Neurotoxicity Research, 2002, 4, 281-296.	1.3	38
61	Gene–environment interactions in vulnerability to cocaine intravenous self-administration: a brief social experience affects intake in DBA/2J but not in C57BL/6J mice. Psychopharmacology, 2007, 193, 179-186.	1.5	38
62	Palmitoylethanolamide modulates pentobarbital-evoked hypnotic effect in mice. European Neuropsychopharmacology, 2010, 20, 195-206.	0.3	37
63	Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential. European Journal of Neuroscience, 1998, 10, 3269-3275.	1.2	35
64	Noradrenergic regulation of type-I and type-II corticosteroid receptors in amygdala and hypothalamus. Brain Research, 1992, 587, 313-318.	1.1	31
65	The central serotonin2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. , 2018, 181, 143-155.		31
66	Serotonin _{2C} receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addiction Biology, 2015, 20, 445-457.	1.4	30
67	Cocaine-induced Increase in Cortical Acetylcholine Release: Interaction with the Hypothalamo-Pituitary-Adrenal Axis. European Journal of Neuroscience, 1997, 9, 1130-1136.	1.2	28
68	A new nomenclature for classifying psychotropic drugs. British Journal of Clinical Pharmacology, 2017, 83, 1614-1616.	1.1	26
69	Release of endogenous dopamine in cultured mesencephalic neurons: influence of dopaminergic agonists and glucocorticoid antagonists. European Journal of Neuroscience, 1999, 11, 2343-2350.	1.2	24
70	Transcriptional Effects of Glucocorticoid Receptors in the Dentate Gyrus Increase Anxiety-Related Behaviors. PLoS ONE, 2009, 4, e7704.	1.1	24
71	Coupled intracerebral microdialysis and electrophysiology for the assessment of dopamine neuron function in vivo. Journal of Pharmacological and Toxicological Methods, 2012, 65, 83-92.	0.3	23
72	Central serotonin2B receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow. Neuropharmacology, 2015, 97, 329-337.	2.0	22

#	Article	IF	CITATIONS
73	Interplay of Maternal Care and Genetic Influences in Programming Adult Hippocampal Neurogenesis. Biological Psychiatry, 2012, 72, 282-289.	0.7	20
74	Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia. Neuropharmacology, 2016, 109, 59-68.	2.0	18
75	Opposite control of mesocortical and mesoaccumbal dopamine pathways by serotonin2B receptor blockade: Involvement of medial prefrontal cortex serotonin1A receptors. Neuropharmacology, 2017, 119, 91-99.	2.0	17
76	Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow. Neuropharmacology, 2015, 89, 375-381.	2.0	14
77	Western blot detection of brain phosphoproteins after performing Laser Microdissection and Pressure Catapulting (LMPC). Journal of Neuroscience Methods, 2011, 198, 204-212.	1.3	12
78	Circling behavior: Ethological analysis and functional considerations. Behavioural Brain Research, 1989, 31, 267-271.	1.2	9
79	Interactions between imidazoline binding sites and dopamine levels in the rat nucleus accumbens. European Journal of Neuroscience, 2000, 12, 4547-4551.	1.2	7
80	What juxtaposition, tradition and parsimony can do to vertical shifts in drug self-administration dose?response functions. Psychopharmacology, 2004, 171, 356-359.	1.5	6
81	The influence of dopaminergic A10 neurons on the motor pattern evoked by substantia nigra (pars) Tj ETQq1 1 0	.784314 r 1.2	g&T /Overloc
82	Differential calbindinâ€immunoreactivity in dopamine neurons projecting to the rat striatal complex. European Journal of Neuroscience, 2000, 12, 4578-4582.	1.2	3
83	Differential calbindin-immunoreactivity in dopamine neurons projecting to the rat striatal complex. European Journal of Neuroscience, 2000, 12, 4578-4582.	1.2	2
84	Reconciling discrete psychological typology with a psychobiological continuum. Behavioral and Brain Sciences, 1999, 22, 529-530.	0.4	1
85	Endocrinology of Drug Dependence. , 0, , 425-434.		1
86	Glucocorticoid hormones, individual differences, and behavioral and dopaminergic responses to psychostimulant drugs. Handbook of Behavioral Neuroscience, 2005, , 89-111.	0.0	1
87	Differential expression of the neuronal CB1 cannabinoid receptor in the hippocampus of male Ts65Dn Down syndrome mouse model. Molecular and Cellular Neurosciences, 2022, 119, 103705.	1.0	1
88	Interactions between imidazoline binding sites and dopamine levels in the rat nucleus accumbens. European Journal of Neuroscience, 2000, 12, 4547-4551.	1.2	0