Yi-Shuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11366390/publications.pdf

Version: 2024-02-01

26 3,415 24 26
papers citations h-index g-index

26 26 26 4297 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mechanotransduction in Response to Shear Stress. Journal of Biological Chemistry, 1999, 274, 18393-18400.	3.4	506
2	Shear Stress–Initiated Signaling and Its Regulation of Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2191-2198.	2.4	389
3	Flow-Dependent Regulation of Kr $ ilde{A}$ /4ppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation, 2011, 124, 633-641.	1.6	257
4	Shear stress, SIRT1, and vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10268-10273.	7.1	247
5	DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiological Genomics, 2001, 7, 55-63.	2.3	240
6	Shear Stress Activates p60src-Ras-MAPK Signaling Pathways in Vascular Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 227-234.	2.4	229
7	Regulation of Vascular Smooth Muscle Cell Turnover by Endothelial Cell–Secreted MicroRNA-126. Circulation Research, 2013, 113, 40-51.	4.5	223
8	Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3234-3239.	7.1	160
9	Shear stress regulation of Kr $\tilde{A}^{1}\!\!/\!4$ ppel-like factor 2 expression is flow pattern-specific. Biochemical and Biophysical Research Communications, 2006, 341, 1244-1251.	2.1	131
10	Fluid Shear Stress Activation of l [®] B Kinase Is Integrin-dependent. Journal of Biological Chemistry, 1998, 273, 30544-30549.	3.4	130
11	Interplay between integrins and FLK-1 in shear stress-induced signaling. American Journal of Physiology - Cell Physiology, 2002, 283, C1540-C1547.	4.6	117
12	Flow Activation of AMP-Activated Protein Kinase in Vascular Endothelium Leads to Krul ppel-Like Factor 2 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1902-1908.	2.4	112
13	Endothelial Trauma From Mechanical Thrombectomy in Acute Stroke. Stroke, 2015, 46, 1099-1106.	2.0	108
14	Epigenetic Mechanism in Regulation of Endothelial Function by Disturbed Flow: Induction of DNA Hypermethylation by DNMT1. Cellular and Molecular Bioengineering, 2014, 7, 218-224.	2.1	73
15	Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. Journal of Orthopaedic Research, 2000, 18, 899-908.	2.3	66
16	Extracellular MicroRNA-92a Mediates Endothelial Cell–Macrophage Communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2492-2504.	2.4	65
17	Shear stress and VEGF activate IKK via the Flk-1/Cbl/Akt signaling pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H685-H692.	3.2	55
18	Molecular basis of mechanical modulation of endothelial cell migration. Frontiers in Bioscience - Landmark, 2005, 10, 1985.	3.0	53

Yı-Shuan Lı

#	Article	IF	CITATION
19	LINC00341 exerts an anti-inflammatory effect on endothelial cells by repressing VCAM1. Physiological Genomics, 2017, 49, 339-345.	2.3	53
20	VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8271-8276.	7.1	40
21	MicroRNA-23b Regulates Cyclin-Dependent Kinase–Activating Kinase Complex Through Cyclin H Repression to Modulate Endothelial Transcription and Growth Under Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1437-1445.	2.4	33
22	Improved significance test for DNA microarray data: temporal effects of shear stress on endothelial genes. Physiological Genomics, 2002, 12, 1-11.	2.3	30
23	DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Molecular and Cellular Biochemistry, 2006, 281, 1-15.	3.1	28
24	Shear stress regulation of miR-93 and miR-484 maturation through nucleolin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12974-12979.	7.1	26
25	The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow. Scientific Reports, 2017, 7, 14996.	3.3	23
26	Shear Stress Regulates the Flk-1/Cbl/PI3K/NF-κB Pathway Via Actin and Tyrosine Kinases. Cellular and Molecular Bioengineering, 2009, 2, 341-350.	2.1	21