Gabrielle Couchy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11366234/publications.pdf

Version: 2024-02-01

		126907	144013
58	9,247	33	57
papers	citations	h-index	g-index
59	59	59	12365
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncology, The, 2022, 23, 161-171.	10.7	36
2	MicroRNAs Possibly Involved in the Development of Bone Metastasis in Clear-Cell Renal Cell Carcinoma. Cancers, 2021, 13, 1554.	3.7	9
3	MicroRNAs Targeting HIF-2α, VEGFR1 and/or VEGFR2 as Potential Predictive Biomarkers for VEGFR Tyrosine Kinase and HIF-2α Inhibitors in Metastatic Clear-Cell Renal Cell Carcinoma. Cancers, 2021, 13, 3099.	3.7	16
4	Molecular Subtypes and Gene Expression Signatures as Prognostic Features in Fully Resected Clear Cell Renal Cell Carcinoma: A Tailored Approach to Adjuvant Trials. Clinical Genitourinary Cancer, 2021, 19, e382-e394.	1.9	9
5	DNA Methylation Signatures Reveal the Diversity of Processes Remodeling Hepatocellular Carcinoma Methylomes. Hepatology, 2021, 74, 816-834.	7.3	20
6	Molecular underpinnings of glandular tropism in metastatic clear cell renal cell carcinoma: therapeutic implications. Acta Oncol \tilde{A}^3 gica, 2021, 60, 1499-1506.	1.8	12
7	Clinical Impact of Genomic Diversity From Early to Advanced Hepatocellular Carcinoma. Hepatology, 2020, 71, 164-182.	7. 3	129
8	Polyploidy spectrum: a new marker in HCC classification. Gut, 2020, 69, 355-364.	12.1	82
9	Recurrent chromosomal rearrangements of <i>ROS1</i> , <i>FRK</i> and <i>IL6</i> activating JAK/STAT pathway in inflammatory hepatocellular adenomas. Gut, 2020, 69, 1667-1676.	12.1	17
10	BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. Journal of Hepatology, 2020, 72, 924-936.	3.7	44
11	MicroRNA expression profiles in molecular subtypes of clear-cell renal cell carcinoma are associated with clinical outcome and repression of specific mRNA targets. PLoS ONE, 2020, 15, e0238809.	2.5	5
12	Validation of the Correlation Between Single Nucleotide Polymorphism rs307826 in VEGFR3 and Outcome in Metastatic Clear-Cell Renal Cell Carcinoma Patients Treated with Sunitinib. Kidney Cancer, 2020, 4, 139-149.	0.4	0
13	Lect2 Controls Inflammatory Monocytes to Constrain the Growth and Progression of Hepatocellular Carcinoma. Hepatology, 2019, 69, 160-178.	7.3	36
14	Immunogenomics of Metastatic Clear-Cell Renal Cell Carcinoma: Remarkable Response to Nivolumab in a Patient With a Pathogenic Germ Line BRCA1 Mutation. Clinical Genitourinary Cancer, 2019, 17, e909-e912.	1.9	1
15	Analysis of Liver Cancer Cell Lines Identifies Agents With Likely Efficacy Against Hepatocellular Carcinoma and Markers of Response. Gastroenterology, 2019, 157, 760-776.	1.3	141
16	Clear-cell Renal Cell Carcinoma: Molecular Characterization of IMDC Risk Groups and Sarcomatoid Tumors. Clinical Genitourinary Cancer, 2019, 17, e981-e994.	1.9	34
17	Dynamics and predicted drug response of a gene network linking dedifferentiation with beta-catenin dysfunction in hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 323-332.	3.7	11
18	Fibroblast Growth Factor Receptor-2 Polymorphism rs2981582 is Correlated With Progression-free Survival and Overall Survival in Patients With Metastatic Clear-cell Renal Cell Carcinoma Treated With Sunitinib. Clinical Genitourinary Cancer, 2019, 17, e235-e246.	1.9	4

#	Article	IF	CITATIONS
19	Molecular Subtypes of Clear-cell Renal Cell Carcinoma are Prognostic for Outcome After Complete Metastasectomy. European Urology, 2018, 74, 474-480.	1.9	72
20	Polymorphisms in the Von Hippel–Lindau Gene Are Associated With Overall Survival in Metastatic Clear-Cell Renal-Cell Carcinoma Patients Treated With VEGFR Tyrosine Kinase Inhibitors. Clinical Genitourinary Cancer, 2018, 16, 266-273.	1.9	11
21	Argininosuccinate synthase 1 and periportal gene expression in sonic hedgehog hepatocellular adenomas. Hepatology, 2018, 68, 964-976.	7.3	43
22	Pro-angiogenic gene expression is associated with better outcome on sunitinib in metastatic clear-cell renal cell carcinoma. Acta Oncol $ ilde{A}^3$ gica, 2018, 57, 498-508.	1.8	41
23	Molecular Subtypes of Clear Cell Renal Cell Carcinoma Are Associated With Outcome During Pazopanib Therapy in the Metastatic Setting. Clinical Genitourinary Cancer, 2018, 16, e605-e612.	1.9	37
24	Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nature Communications, 2018, 9, 5235.	12.8	118
25	Proliferation Markers Are Associated with MET Expression in Hepatocellular Carcinoma and Predict Tivantinib Sensitivity <i>In Vitro</i> . Clinical Cancer Research, 2017, 23, 4364-4375.	7. O	57
26	Malignant transformation of a \hat{l}^2 -catenin inflammatory adenoma due to an S45 \hat{l}^2 -cateninâ \in "activating mutation present 12 years before. Human Pathology, 2017, 62, 122-125.	2.0	13
27	Focal βâ€catenin mutation identified on formalinâ€fixed and paraffinâ€embedded inflammatory hepatocellular adenomas. Histopathology, 2017, 71, 989-993.	2.9	14
28	Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. Journal of Hepatology, 2017, 67, 727-738.	3.7	525
29	Germline and somatic DICER1 mutations in familial and sporadic liver tumors. Journal of Hepatology, 2017, 66, 734-742.	3.7	31
30	Molecular Classification of Hepatocellular Adenoma AssociatesÂWith Risk Factors, Bleeding, and Malignant Transformation. Gastroenterology, 2017, 152, 880-894.e6.	1.3	290
31	Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nature Communications, 2017, 8, 1315.	12.8	228
32	Hepatocyte nuclear factor $1\hat{l}_{\pm}$ suppresses steatosis-associated liver cancer by inhibiting PPAR \hat{l}_{3} transcription. Journal of Clinical Investigation, 2017, 127, 1873-1888.	8.2	58
33	Metalloproteinase meprin α regulates migration and invasion of human hepatocarcinoma cells and is a mediator of the oncoprotein Reptin. Oncotarget, 2017, 8, 7839-7851.	1.8	20
34	Genotypeâ€phenotype correlation of CTNNB1 mutations reveals different ßâ€catenin activity associated with liver tumor progression. Hepatology, 2016, 64, 2047-2061.	7. 3	222
35	Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and pointâ€mutant βâ€catenin. Hepatology, 2016, 64, 1587-1605.	7.3	92
36	Keratin 23 is a stress-inducible marker of mouse and human ductular reaction in liver disease. Journal of Hepatology, 2016, 65, 552-559.	3.7	32

3

#	Article	IF	CITATIONS
37	Wild-type AAV Insertions in Hepatocellular Carcinoma Do Not Inform Debate Over Genotoxicity Risk of Vectorized AAV. Molecular Therapy, 2016, 24, 660-661.	8.2	33
38	TGF- \hat{l}^21 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. European Journal of Cell Biology, 2016, 95, 503-512.	3.6	41
39	Validation of <scp>VEGFR</scp> 1 rs9582036 as predictive biomarker in metastatic clearâ€eell renal cell carcinoma patients treated with sunitinib. BJU International, 2016, 118, 890-901.	2.5	23
40	AAV2 and Hepatocellular Carcinoma. Human Gene Therapy, 2016, 27, 211-213.	2.7	8
41	Inflammatory hepatocellular adenomas developed in the setting of chronic liver disease and cirrhosis. Modern Pathology, 2016, 29, 43-50.	5 . 5	45
42	Molecular Subtypes of Clear Cell Renal Cell Carcinoma Are Associated with Sunitinib Response in the Metastatic Setting. Clinical Cancer Research, 2015, 21, 1329-1339.	7.0	250
43	Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nature Genetics, 2015, 47, 505-511.	21.4	1,372
44	Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nature Genetics, 2015, 47, 1187-1193.	21.4	387
45	Efflux pump ABCB1 single nucleotide polymorphisms and dose reductions in patients with metastatic renal cell carcinoma treated with sunitinib. Acta Oncol \tilde{A}^3 gica, 2014, 53, 1413-1422.	1.8	30
46	VEGFR1 single nucleotide polymorphisms associated with outcome in patients with metastatic renal cell carcinoma treated with sunitinib $\hat{a} \in \hat{a}$ a multicentric retrospective analysis. Acta Oncol \tilde{A}^3 gica, 2014, 53, 103-112.	1.8	45
47	Genomic Profiling of Hepatocellular Adenomas Reveals Recurrent FRK-Activating Mutations and the Mechanisms of Malignant Transformation. Cancer Cell, 2014, 25, 428-441.	16.8	240
48	Characterization of a novel PXR isoform with potential dominant-negative properties. Journal of Hepatology, 2014, 61, 609-616.	3.7	15
49	A Hepatocellular Carcinoma 5-Gene Score Associated With Survival of Patients After Liver Resection. Gastroenterology, 2013, 145, 176-187.	1.3	302
50	Biochemical and functional analyses of gp130 mutants unveil JAK1 as a novel therapeutic target in human inflammatory hepatocellular adenoma. Oncolmmunology, 2013, 2, e27090.	4.6	39
51	GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation. Journal of Hepatology, 2012, 56, 184-191.	3.7	354
52	Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genetics, 2012, 44, 694-698.	21.4	1,229
53	Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. Journal of Experimental Medicine, 2011, 208, 1359-1366.	8.5	218
54	Hepatocellular adenoma management and phenotypic classification: The Bordeaux experience. Hepatology, 2009, 50, 481-489.	7. 3	394

#	Article	IF	CITATION
55	Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature, 2009, 457, 200-204.	27.8	437
56	MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology, 2008, 47, 1955-1963.	7.3	634
57	The \hat{l}^2 -catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules. Journal of Hepatology, 2008, 49, 61-71.	3.7	87
58	Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology, 2007, 46, 740-748.	7.3	554