Darren Dale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11364754/publications.pdf Version: 2024-02-01

NADDEN DALE

#	Article	IF	CITATIONS
1	In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint. Acta Materialia, 2018, 144, 748-757.	7.9	37
2	Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 425-446.	0.1	19
3	Measured resolved shear stresses and Bishop-Hill stress states in individual grains of austenitic stainless steel. Acta Materialia, 2017, 141, 388-404.	7.9	26
4	Elastic interaction between twins during tensile deformation of austenitic stainless steel. Scripta Materialia, 2016, 120, 1-4.	5.2	30
5	Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys. Thermochimica Acta, 2015, 603, 53-62.	2.7	22
6	<i>In-situ</i> X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe0.84Ni0.16 thin-film sample. Applied Physics Letters, 2013, 102, 201902.	3.3	33
7	Scanning AC nanocalorimetry combined with <i>in-situ</i> x-ray diffraction. Journal of Applied Physics, 2013, 113, .	2.5	36
8	Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scripta Materialia, 2012, 66, 178-181.	5.2	49
9	A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Review of Scientific Instruments, 2011, 82, 015105.	1.3	54
10	Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1279-1280.	2.1	6
11	Phase Behavior of Pseudobinary Precious Metalâ~'Carbide Systems. Journal of Physical Chemistry C, 2010, 114, 21664-21671.	3.1	5
12	High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Review of Scientific Instruments, 2009, 80, 123905.	1.3	39
13	In situx-ray reflectivity studies of dynamics and morphology during heteroepitaxial complex oxide thin film growth. Journal of Physics Condensed Matter, 2008, 20, 264008.	1.8	13
14	Technical Report: <i>In-situ</i> Studies of Pulsed Laser Deposition Growth at CHESS. Synchrotron Radiation News, 2007, 20, 32-37.	0.8	0
15	Multiple Time Scales in Diffraction Measurements of Diffusive Surface Relaxation. Physical Review Letters, 2006, 96, 055508.	7.8	34
16	X-ray scattering from real surfaces: Discrete and continuous components of roughness. Physical Review B, 2006, 74, .	3.2	24
17	Observed Effects of a Changing Step-Edge Density on Thin-Film Growth Dynamics. Physical Review Letters, 2005, 94, 036102.	7.8	31
18	Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3. Journal of Applied Physics, 2004, 96, 5324-5328.	2.5	30

DARREN DALE

#	Article	IF	CITATIONS
19	Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Applied Physics Letters, 2003, 82, 3725-3727.	3.3	65
20	The Effect of Changing Epitaxial Strain on Colossal Magnetoresistance Thin Films. Materials Research Society Symposia Proceedings, 2002, 751, 1.	0.1	0
21	Transport properties of Cr-patterned Yba2Cu3O7 thin films. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	0
22	In-plane uniaxial magnetic anisotropy of cobalt-doped Y3Fe5O12 epitaxial films. Applied Physics Letters, 1999, 74, 3026-3028.	3.3	6
23	In-Plane Uniaxial Magnetic Anisotropy of Cobalt Doped Y ₃ Fe ₅ O ₁₂ Epitaxial Films. Materials Research Society Symposia Proceedings, 1999, 603, 95.	0.1	2