Si-Yang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11364628/publications.pdf Version: 2024-02-01

SI-VANC LI

#	Article	IF	CITATIONS
1	Sterilizing Activity of Novel TMC207- and PA-824-Containing Regimens in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 5485-5492.	3.2	181
2	Mutations in <i>pepQ</i> Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4590-4599.	3.2	165
3	Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 869-874.	7.1	116
4	Assessment of Clofazimine Activity in a Second-Line Regimen for Tuberculosis in Mice. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 608-612.	5.6	114
5	Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 270-277.	3.2	98
6	Autoluminescent Mycobacterium tuberculosis for Rapid, Real-Time, Non-Invasive Assessment of Drug and Vaccine Efficacy. PLoS ONE, 2012, 7, e29774.	2.5	71
7	Bactericidal and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	68
8	Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	62
9	Short-Course Chemotherapy with TMC207 and Rifapentine in a Murine Model of Latent Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 732-737.	5.6	58
10	Treatment of Tuberculosis with Rifamycin-containing Regimens in Immune-deficient Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1254-1261.	5.6	54
11	Mutations in <i>fbiD</i> (<i>Rv2983</i>) as a Novel Determinant of Resistance to Pretomanid and Delamanid in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	48
12	Accelerated Detection of Mycolactone Production and Response to Antibiotic Treatment in a Mouse Model of Mycobacterium ulcerans Disease. PLoS Neglected Tropical Diseases, 2014, 8, e2618.	3.0	38
13	Evaluation of Moxifloxacin-Containing Regimens in Pathologically Distinct Murine Tuberculosis Models. Antimicrobial Agents and Chemotherapy, 2015, 59, 4026-4030.	3.2	38
14	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	37
15	Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	35
16	Modeling early bactericidal activity in murine tuberculosis provides insights into the activity of isoniazid and pyrazinamide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15001-15005.	7.1	33
17	Using Bioluminescence To Monitor Treatment Response in Real Time in Mice with <i>Mycobacterium ulcerans</i> Infection. Antimicrobial Agents and Chemotherapy, 2011, 55, 56-61.	3.2	28
18	Rapid, Serial, Non-invasive Assessment of Drug Efficacy in Mice with Autoluminescent Mycobacterium ulcerans Infection. PLoS Neglected Tropical Diseases, 2013, 7, e2598.	3.0	28

SI-YANG LI

#	Article	IF	CITATIONS
19	Shorter-course treatment for Mycobacterium ulcerans disease with high-dose rifamycins and clofazimine in a mouse model of Buruli ulcer. PLoS Neglected Tropical Diseases, 2018, 12, e0006728.	3.0	26
20	Efficacy of Rifampin Plus Clofazimine in a Murine Model of Mycobacterium ulcerans Disease. PLoS Neglected Tropical Diseases, 2015, 9, e0003823.	3.0	25
21	Bactericidal Activity Does Not Predict Sterilizing Activity: The Case of Rifapentine in the Murine Model of Mycobacterium ulcerans Disease. PLoS Neglected Tropical Diseases, 2013, 7, e2085.	3.0	17
22	Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant <i>Rv0678</i> Mutant in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0141221.	3.2	16
23	High-Dose Rifamycins Enable Shorter Oral Treatment in a Murine Model of Mycobacterium ulcerans Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
24	Pharmacodynamic Correlates of Linezolid Activity and Toxicity in Murine Models of Tuberculosis. Journal of Infectious Diseases, 2021, 223, 1855-1864.	4.0	15
25	CSK2556286 Is a Novel Antitubercular Drug Candidate Effective <i>In Vivo</i> with the Potential To Shorten Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	12
26	Revisiting Anti-tuberculosis Activity of Pyrazinamide in Mice. Mycobacterial Diseases: Tuberculosis & Leprosy, 2014, 04, 145.	0.1	11
27	Differential <i>In Vitro</i> Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations against Actively Multiplying and Nutrient-Starved Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	11
28	Oxazolidinones Can Replace Clarithromycin in Combination with Rifampin in a Mouse Model of Buruli Ulcer. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
29	Failure Of Daily Treatment For Tuberculosis (TB) With Rifampin (R), Isoniazid (H) And Pyrazinamide (Z) In Immune-deficient Mice. , 2010, , .		1