Scott J Nissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11355925/publications.pdf

Version: 2024-02-01

		186265	197818
80	2,750 citations	28	49
papers	citations	h-index	g-index
80	80	80	2036
00	00	00	2030
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<scp>2,4â€D</scp> and <scp>2,4â€D</scp> butoxyethyl ester behavior in <scp>E</scp> urasian and hybrid watermilfoil (<i>Myriophyllum</i> spp.). Pest Management Science, 2022, 78, 626-632.	3.4	1
2	Prescribed burning followed by indaziflam enhances downy brome (<i>Bromus tectorum</i>) control. Invasive Plant Science and Management, 2022, 15, 72-80.	1.1	5
3	Simulated trampling by cattle negatively impacts invasive yellow-flag iris (<i>lris pseudacorus</i>) when submerged. Invasive Plant Science and Management, 2021, 14, 232-239.	1.1	2
4	Total vegetation control: a comprehensive summary of herbicides, application timings, and resistance management options. Weed Technology, 2020, 34, 155-163.	0.9	0
5	Seed retention of winter annual grass weeds at winter wheat harvest maturity shows potential for harvest weed seed control. Weed Technology, 2020, 34, 266-271.	0.9	22
6	Evaluating winter annual grass control and native species establishment following applications of indaziflam on rangeland. Invasive Plant Science and Management, 2020, 13, 199-209.	1.1	11
7	Survey reveals frequency of multiple resistance to glyphosate and dicamba in kochia (<i>Bassia) Tj ETQq1 1 0.784</i>	314 rgBT	Qyerlock <mark>1</mark> 0
8	The influence of winter annual grass litter on herbicide availability. Weed Science, 2019, 67, 702-709.	1.5	12
9	Effect of indaziflam on native species in natural areas and rangeland. Invasive Plant Science and Management, 2019, 12, 60-67.	1.1	19
10	Predicting herbicide movement across semi-permeable membranes using three phase partitioning. Pesticide Biochemistry and Physiology, 2019, 159, 22-26.	3 . 6	8
11	Endothall behavior in Myriophyllum spicatum and Hydrilla verticillata. Pest Management Science, 2019, 75, 2942-2947.	3.4	4
12	Metabolism of 2,4â€dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (<i>Amaranthus tuberculatus</i>) population. Pest Management Science, 2018, 74, 2356-2362.	3.4	60
13	Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on <i>Kochia scoparia</i> L Pest Management Science, 2017, 73, 444-451.	3.4	19
14	Seed Bank Depletion: The Key to Long-Term Downy Brome (Bromus tectorum L.) Management. Rangeland Ecology and Management, 2017, 70, 477-483.	2.3	35
15	Multiple Resistance to Glyphosate and Acetolactate Synthase Inhibitors in Palmer Amaranth (<i>Amaranthus palmeri</i>) Identified in Brazil. Weed Science, 2017, 65, 317-326.	1.5	55
16	Preemergence Control of Nine Invasive Weeds with Aminocyclopyrachlor, Aminopyralid, and Indaziflam. Invasive Plant Science and Management, 2017, 10, 99-109.	1.1	17
17	A KASP Genotyping Method to Identify Northern Watermilfoil, Eurasian Watermilfoil, and Their Interspecific Hybrids. Frontiers in Plant Science, 2017, 8, 752.	3.6	36
18	Indaziflam: a new celluloseâ€biosynthesisâ€inhibiting herbicide provides longâ€term control of invasive winter annual grasses. Pest Management Science, 2017, 73, 2149-2162.	3.4	46

#	Article	IF	CITATIONS
19	Confirmation and mechanism of glyphosate resistance in tall windmill grass (<i>Chloris elata</i>) from Brazil. Pest Management Science, 2016, 72, 1758-1764.	3.4	38
20	Halosulfuron Absorption, Translocation, and Metabolism in White and Adzuki Bean. Weed Science, 2016, 64, 705-711.	1.5	4
21	Impacts of Imazapyr and Triclopyr Soil Residues on the Growth of Several Restoration Species. Rangeland Ecology and Management, 2016, 69, 199-205.	2.3	13
22	Efficacy and environmental fate of imazapyr from directed helicopter applications targeting Tamarix species infestations in Colorado. Pest Management Science, 2016, 72, 379-387.	3.4	5
23	A Potential New Herbicide for Invasive Annual Grass Control on Rangeland. Rangeland Ecology and Management, 2016, 69, 195-198.	2.3	37
24	Litter Reduction by Prescribed Burning Can Extend Downy Brome Control. Rangeland Ecology and Management, 2015, 68, 367-374.	2.3	9
25	Triclopyr Absorption and Translocation by Eurasian Watermilfoil (<i>Myriophyllum spicatum</i>) Following Liquid and Granular Applications. Weed Science, 2014, 62, 22-28.	1.5	1
26	Characterization of Glyphosate Resistance in <i>Amaranthus tuberculatus</i> Populations. Journal of Agricultural and Food Chemistry, 2014, 62, 8134-8142.	5.2	78
27	Herbicideâ€resistant weeds: from research and knowledge to future needs. Evolutionary Applications, 2013, 6, 1218-1221.	3.1	108
28	Aminocyclopyrachlor Absorption, Translocation and Metabolism in Field Bindweed (Convolvulus) Tj ETQq0 0 0 r	gBT ₁ /Overl	ock 10 Tf 50 3
29	Imazamox Absorption, Translocation, and Metabolism in Red Lentil and Dry Bean. Weed Science, 2012, 60, 350-354.	1.5	15
30	MCPA Synergizes Imazamox Control of Feral Rye (<i>Secale cereale</i>). Weed Technology, 2011, 25, 303-309.	0.9	5
31	Nonlinear Regression Analysis of Herbicide Absorption Studies. Weed Science, 2011, 59, 601-610.	1.5	65
32	Absorption and Translocation of Aminocyclopyrachlor and Aminocyclopyrachlor-Methyl Ester in Canada Thistle (Cirsium arvense). Weed Science, 2010, 58, 96-102.	1.5	41
33	Gene amplification confers glyphosate resistance in <i>Amaranthus palmeri</i> National Academy of Sciences of the United States of America, 2010, 107, 1029-1034.	7.1	557
34	Comparison of the Interactions of Aminopyralid vs. Clopyralid with Soil. Weed Science, 2010, 58, 473-477.	1.5	15
35	Vapor Movement of Synthetic Auxin Herbicides: Aminocyclopyrachlor, Aminocyclopyrachlor-Methyl Ester, Dicamba, and Aminopyralid. Weed Science, 2010, 58, 103-108.	1.5	46
36	The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biological Invasions, 2009, 11, 325-332.	2.4	38

#	Article	IF	Citations
37	Inheritance of Resistance to The Auxinic Herbicide Dicamba in Kochia (<i>Kochia scoparia</i>). Weed Science, 2009, 57, 43-47.	1.5	62
38	Aminopyralid and Clopyralid Absorption and Translocation in Canada Thistle (<i>Cirsium arvense</i> li>). Weed Science, 2009, 57, 10-15.	1.5	31
39	Herbivory and novel weapons: no evidence for enhanced competitive ability or allelopathy induction of Centaurea diffusa by biological controls. Biological Invasions, 2008, 10, 79-88.	2.4	25
40	First‥ear Responses of Cheatgrass Following <i>Tamarix </i> spp. Control and Restorationâ€Related Disturbances. Restoration Ecology, 2008, 16, 129-135.	2.9	9
41	Jointed Goatgrass (Aegilops Cylindrica) by Imidazolinone-Resistant Wheat Hybridization under Field Conditions. Weed Science, 2008, 56, 32-36.	1.5	30
42	Recovery of Imidazolinoneâ€Resistant Hard Red Wheat Lines Following Imazamox Application. Crop Science, 2007, 47, 2058-2066.	1.8	5
43	Ethylene effect on kochia (Kochia scoparia) and emission following dicamba application. Weed Science, 2006, 54, 31-37.	1.5	11
44	Response of Selected Hard Red Wheat Lines to Imazamox as Affected by Number and Location of Resistance Genes, Parental Background, and Growth Habit. Crop Science, 2006, 46, 1206-1211.	1.8	21
45	A Lack of Evidence for an Ecological Role of the Putative Allelochemical (±)-Catechin in Spotted Knapweed Invasion Success. Journal of Chemical Ecology, 2006, 32, 2327-2331.	1.8	119
46	New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecology Letters, 2005, 8, 1039-1047.	6.4	96
47	Pre- and post-introduction patterns in neutral genetic diversity in the leafy spurge gall midge, Spurgia capitigena (Bremi) (Diptera: Cecidomyiidae). Biological Control, 2005, 33, 153-164.	3.0	20
48	Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Molecular Ecology Notes, 2004, 4, 605-607.	1.7	3
49	Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Science, 2003, 51, 287-293.	1.5	33
50	Effect of Commercial Adjuvants on Vegetable Crop Fungicide Coverage, Absorption, and Efficacy. Plant Disease, 2003, 87, 591-597.	1.4	48
51	Influence of Shade and Irrigation on the Response of Corn (Zea mays), Soybean (Glycine max), and Wheat (Triticum aestivum) to Carfentrazone–Ethyl1. Weed Technology, 2002, 16, 314-318.	0.9	14
52	Absorption, translocation, and metabolism of imazamox in jointed goatgrass and feral rye. Weed Science, 2001, 49, 607-612.	1.5	39
53	Absorption and fate of BAY MKH 6561 in jointed goatgrass and downy brome. Weed Science, 2001, 49, 717-722.	1.5	7
54	Absorption and fate of carfentrazone-ethyl inZea mays, Glycine max, and Abutilon the ophrasti. Weed Science, 2000, 48, 15-19.	1.5	27

#	Article	IF	Citations
55	Use of Quinclorac Plus 2,4-D for Controlling Field Bindweed (Convolvulus arvensis) in Fallow. Weed Technology, 1999, 13, 731-736.	0.9	7
56	The influence of surfactant and nitrogen on foliar absorption of MON 37500. Weed Science, 1999, 47, 270-274.	1.5	21
57	Absorption, fate, and soil activity of quinclorac in field bindweed (Convolvulus arvensis). Weed Science, 1999, 47, 136-142.	1.5	10
58	AC 263,222 absorption and fate in leafy spurge (<i>Euphorbia esula</i>). Weed Science, 1998, 46, 510-513.	1.5	9
59	Mechanism of primisulfuron resistance in a shattercane (<i>Sorghum bicolor</i>) biotype. Weed Science, 1998, 46, 158-162.	1.5	27
60	Revegetating Leafy Spurge (<i>Euphorbia esula</i>)-Infested Rangeland with Native Tallgrasses. Weed Technology, 1998, 12, 381-390.	0.9	29
61	Weed Control in Soybean (<i>Glycine max</i>) with Green Manure Crops. Weed Technology, 1998, 12, 97-102.	0.9	73
62	Genetic variation in North American leafy spurge (Euphorbia esula) determined by DNA markers. Weed Science, 1997, 45, 446-454.	1.5	32
63	Proso Millet (<i>Panicum miliaceum</i>) Response to CGA-152005, Metsulfuron, and Triasulfuron. Weed Technology, 1997, 11, 138-143.	0.9	4
64	Leafy Spurge (Euphorbia esula) Genotype Affects Gall Midge (Spurgia esulae) Establishment. Weed Science, 1996, 44, 629-633.	1.5	28
65	Adjuvant Effects on Imazethapyr, 2,4-D and Picloram Absorption by Leafy Spurge (<i>Euphorbia) Tj ETQq1 1 0.78</i>	34314 rgB	T /gyerlock 1
66	Imidazolinone Herbicides Improve Restoration of Great Plains Grasslands. Weed Technology, 1996, 10, 392-403.	0.9	84
67	Absorption and fate of imazapyr in leafy spurge(Euphorbia esula). Pest Management Science, 1995, 45, 325-329.	0.4	15
68	DNA-Based Marker Systems to Determine Genetic Diversity of Weedy Species and Their Application to Biocontrol. Weed Science, 1995, 43, 504-513.	1.5	71
69	Leafy Spurge (<i>Euphorbia esula</i>) Control with Imidazolinone and Sulfonylurea Herbicides. Weed Technology, 1994, 8, 494-498.	0.9	9
70	Influence of Crop Safeners on the Interaction of Primisulfuron and Terbufos in Corn (Zea mays). Weed Science, 1994, 42, 168-171.	1.5	9
71	Leafy Spurge (<i>Euphorbia esula</i>) Control with Fall-Applied Imazapyr, Imazaquin, and Imazethapyr. Weed Technology, 1994, 8, 58-63.	0.9	11
72	Imazethapyr Absorption and Fate in Leafy Spurge (Euphorbia esula). Weed Science, 1994, 42, 158-162.	1.5	11

#	Article	IF	CITATION
73	The Influence of Terbufos on Primisulfuron Absorption and Fate in Corn (<i>Zea mays</i>). Weed Science, 1993, 41, 664-668.	1.5	16
74	Comparison of Restriction Fragment Length Polymorphisms in Chloroplast DNA of Five Leafy Spurge (Euphorbiaspp.) Accessions. Weed Science, 1992, 40, 63-67.	1.5	14
75	Indole-3-acetic acid and indole-3-butyric acid in tissues of carrot inoculated withAgrobacterium rhizogenes. Journal of Plant Growth Regulation, 1991, 10, 97-100.	5.1	26
76	Relationship between Indole-3-Acetic Acid Levels in Apple (<i>Malus pumila</i> Mill) Rootstocks Cultured <i>in Vitro</i> and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid. Plant Physiology, 1989, 89, 439-443.	4.8	72
77	Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the <i>Diageotropica</i> and <i>Epinastic</i> Mutants of Tomato (<i>Lycopersicon esculentum</i> Mill.). Plant Physiology, 1988, 88, 780-784.	4.8	41
78	<i>Euphorbia escula</i> L. Root and Root Bud Indole-3-Acetic Acid Levels at Three Phenologic Stages. Plant Physiology, 1987, 84, 287-290.	4.8	13
79	Correlative Inhibition and Dormancy in Root Buds of Leafy Spurge (Euphorbia esula). Weed Science, 1987, 35, 155-159.	1.5	21
80	Mechanisms of glyphosate-resistance in common ragweed (Ambrosia artemisiifolia): patterns of absorption, translocation, and metabolism. Weed Science, 0, , 1-27.	1.5	1