Shengjing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11353805/publications.pdf Version: 2024-02-01

SHENCUNC SHI

#	Article	IF	CITATIONS
1	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3, 470-480.	13.3	1,268
2	The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19, 926-936.	6.4	803
3	Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77, 600-610.	2.7	316
4	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	4.1	232
5	Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome, 2018, 6, 122.	11.1	156
6	Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Scientific Reports, 2015, 5, 9316.	3.3	48
7	In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus) Tj ETQq1 1 0.78	4314 rgBT 4.2	/Qyerlock
8	Plant roots alter microbial functional genes supporting root litter decomposition. Soil Biology and Biochemistry, 2018, 127, 90-99.	8.8	35
9	Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. MSphere, 2021, 6, e0008521.	2.9	34
10	Rhizosphere Carbon Turnover from Cradle to Grave: The Role of Microbe–Plant Interactions. Rhizosphere Biology, 2021, , 51-73.	0.6	33
11	Fungal-Bacterial Cooccurrence Patterns Differ between Arbuscular Mycorrhizal Fungi and Nonmycorrhizal Fungi across Soil Niches. MBio, 2021, 12, .	4.1	31
12	Investigation of organic anions in tree root exudates and rhizosphere microbial communities using in situ and destructive sampling techniques. Plant and Soil, 2012, 359, 149-163.	3.7	20
13	Microbial functional genes commonly respond to elevated carbon dioxide. Environment International, 2020, 144, 106068.	10.0	20
14	Impacts of pasture species and ruminant urine on N ₂ O emissions and nitrogen transforming microbial communities in soil mesocosms. New Zealand Journal of Agricultural Research, 2022, 65, 42-62.	1.6	6