Frederik Lermyte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1135183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallodrugs are unique: opportunities and challenges of discovery and development. Chemical Science, 2020, 11, 12888-12917.	7.4	354
2	Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. Journal of the American Society for Mass Spectrometry, 2019, 30, 1149-1157.	2.8	92
3	Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects. Nanoscale, 2018, 10, 11782-11796.	5.6	88
4	Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chemical Science, 2020, 11, 12918-12936.	7.4	81
5	ETD Allows for Native Surface Mapping of a 150 kDa Noncovalent Complex on a Commercial Q-TWIMS-TOF Instrument. Journal of the American Society for Mass Spectrometry, 2014, 25, 343-350.	2.8	78
6	Radical solutions: Principles and application of electronâ€based dissociation in mass spectrometryâ€based analysis of protein structure. Mass Spectrometry Reviews, 2018, 37, 750-771.	5.4	67
7	Electron transfer dissociation provides higherâ€order structural information of native and partially unfolded protein complexes. Proteomics, 2015, 15, 2813-2822.	2.2	57
8	Extensive Charge Reduction and Dissociation of Intact Protein Complexes Following Electron Transfer on a Quadrupole-Ion Mobility-Time-of-Flight MS. Journal of the American Society for Mass Spectrometry, 2015, 26, 1068-1076.	2.8	53
9	Biogenic metallic elements in the human brain?. Science Advances, 2021, 7, .	10.3	48
10	Metal Ion Binding to the Amyloid \hat{I}^2 Monomer Studied by Native Top-Down FTICR Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2123-2134.	2.8	47
11	Top-Down Characterization of Denatured Proteins and Native Protein Complexes Using Electron Capture Dissociation Implemented within a Modified Ion Mobility-Mass Spectrometer. Analytical Chemistry, 2020, 92, 3674-3681.	6.5	35
12	lron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42). Scientific Reports, 2020, 10, 10332.	3.3	34
13	Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin. Journal of the American Society for Mass Spectrometry, 2017, 28, 69-76.	2.8	27
14	Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1. Journal of Biological Chemistry, 2017, 292, 9944-9957.	3.4	23
15	Characterization of top-down ETD in a travelling-wave ion guide. Methods, 2015, 89, 22-29.	3.8	21
16	Understanding reaction pathways in top-down ETD by dissecting isotope distributions: A mammoth task. International Journal of Mass Spectrometry, 2015, 390, 146-154.	1.5	20
17	The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain. Archives of Biochemistry and Biophysics, 2016, 610, 41-50.	3.0	19
18	Gas-phase microsolvation of ubiquitin: investigation of crown ether complexation sites using ion mobility-mass spectrometry. Analyst, The, 2016, 141, 5502-5510.	3.5	19

Frederik Lermyte

#	Article	IF	CITATIONS
19	Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein Complexes. Analytical Chemistry, 2018, 90, 2756-2764.	6.5	19
20	Emerging Approaches to Investigate the Influence of Transition Metals in the Proteinopathies. Cells, 2019, 8, 1231.	4.1	19
21	Top-down/Bottom-up Mass Spectrometry Workflow Using Dissolvable Polyacrylamide Gels. Analytical Chemistry, 2017, 89, 8244-8250.	6.5	18
22	Multiple Protective Roles of Nanoliposomeâ€Incorporated Baicalein against Alphaâ€Synuclein Aggregates. Advanced Functional Materials, 2021, 31, 2007765.	14.9	14
23	Analysis of neuronal iron deposits in Parkinson's disease brain tissue by synchrotron x-ray spectromicroscopy. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126555.	3.0	13
24	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie - International Edition, 2020, 59, 11984-11991.	13.8	13
25	Determination of the Aggregate Binding Site of Amyloid Protofibrils Using Electron Capture Dissociation Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 267-276.	2.8	12
26	Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life, 2020, 10, 320.	2.4	11
27	Facile protein conjugation of platinum for light-activated cytotoxic payload release. Chemical Communications, 2021, 57, 7645-7648.	4.1	11
28	Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation?. Chemical Communications, 2018, 54, 13853-13856.	4.1	9
29	A broader view on ion heating in traveling-wave devices using fragmentation of CsI clusters and extent of HË™ migration as molecular thermometers. Analyst, The, 2017, 142, 3388-3399.	3.5	7
30	masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Analytical Chemistry, 2019, 91, 1801-1807.	6.5	7
31	Solution Condition-Dependent Formation of Gas-Phase Protomers of Alpha-Synuclein in Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2021, 32, 364-372.	2.8	7
32	Differences in the Elemental Isotope Definition May Lead to Errors in Modern Mass-Spectrometry-Based Proteomics. Analytical Chemistry, 2015, 87, 10747-10754.	6.5	6
33	Nanoscale Examination of Biological Tissues Using X-ray Spectromicroscopy. Microscopy and Microanalysis, 2018, 24, 490-491.	0.4	6
34	Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation. International Journal of Molecular Sciences, 2021, 22, 9927.	4.1	6
35	InSourcerer: a highâ€ŧhroughput method to search for unknown metabolite modifications by mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1396-1404.	1.5	5
36	Cu(<scp>iii</scp>)–bis-thiolato complex forms an unusual mono-thiolato Cu(<scp>iii</scp>)–peroxido adduct. Chemical Communications, 2021, 57, 69-72.	4.1	5

FREDERIK LERMYTE

#	Article	IF	CITATIONS
37	The status of the terminal regions of α-synuclein in different forms of aggregates during fibrillization. International Journal of Biological Macromolecules, 2020, 155, 543-550.	7.5	4
38	MIND: A Double-Linear Model To Accurately Determine Monoisotopic Precursor Mass in High-Resolution Top-Down Proteomics. Analytical Chemistry, 2019, 91, 10310-10319.	6.5	3
39	Estimation of Rates of Reactions Triggered by Electron Transfer in Top-Down Mass Spectrometry. Journal of Computational Biology, 2018, 25, 282-301.	1.6	2
40	Metallic iron in cornflakes. Food and Function, 2020, 11, 2938-2942.	4.6	2
41	Generation of maghemite nanocrystals from iron–sulfur centres. Dalton Transactions, 2019, 48, 9564-9569.	3.3	1
42	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie, 2020, 132, 12082-12089.	2.0	0
43	Trendbericht Biochemie: Massenspektrometrie gegen Viren. Nachrichten Aus Der Chemie, 2021, 69, 55-57.	0.0	0
44	Estimation of Rates of Reactions Triggered by Electron Transfer in Top-Down Mass Spectrometry. Lecture Notes in Computer Science, 2017, , 96-107.	1.3	0