
Hiroyuki Araki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11351432/publications.pdf Version: 2024-02-01

ΗΙΡΟΥΠΚΙ ΔΡΛΚΙ

#	Article	IF	CITATIONS
1	Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair, 2022, 110, 103272.	2.8	4
2	Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase—Pol ε Interaction. International Journal of Molecular Sciences, 2020, 21, 9484.	4.1	5
3	Replication fork pausing at protein barriers on chromosomes. FEBS Letters, 2019, 593, 1449-1458.	2.8	19
4	TORC1 signaling regulates DNA replication via DNA replication protein levels. Biochemical and Biophysical Research Communications, 2018, 505, 1128-1133.	2.1	6
5	CDK phosphorylation regulates Mcm3 degradation in budding yeast. Biochemical and Biophysical Research Communications, 2018, 506, 680-684.	2.1	4
6	DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase at the barrier. Genes and Development, 2018, 32, 1315-1320.	5.9	34
7	Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry, 2017, 56, 2435-2445.	2.5	9
8	Preâ€initiation complex assembly functions as a molecular switch that splits the Mcm2â€7 double hexamer. EMBO Reports, 2017, 18, 1752-1761.	4.5	32
9	Conserved interaction of Ctf18â€∢scp>RFC with <scp>DNA</scp> polymerase ε is critical for maintenance of genome stability in <i>Saccharomyces cerevisiae</i> . Genes To Cells, 2016, 21, 482-491.	1.2	19
10	Elucidating the <scp>DDK</scp> â€dependent step in replication initiation. EMBO Journal, 2016, 35, 907-908.	7.8	13
11	Molecular Mechanism of DNA Replication. , 2016, , 3-22.		2
12	iAID: an improved auxin-inducible degron system for the construction of a â€~tight' conditional mutant in the budding yeast <i>Saccharomyces cerevisiae</i> . Yeast, 2015, 32, 567-581.	1.7	40
13	Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair, 2015, 29, 23-35.	2.8	29
14	The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1649-1656.	2.5	34
15	Crystal Structure of the Homology Domain of the Eukaryotic DNA Replication Proteins Sld3/Treslin. Structure, 2014, 22, 1341-1347.	3.3	31
16	Concerted interaction between origin recognition complex (<scp>ORC</scp>), nucleosomes and replication origin <scp>DNA</scp> ensures stable <scp>ORC</scp> –origin binding. Genes To Cells, 2013, 18, 764-779.	1.2	24
17	Helicase Activation and Establishment of Replication Forks at Chromosomal Origins of Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010371-a010371.	5.5	144
18	Kinetochores Coordinate Pericentromeric Cohesion and Early DNA Replication by Cdc7-Dbf4 Kinase Recruitment. Molecular Cell, 2013, 50, 661-674.	9.7	140

Ηιγογικι Αγακι

#	Article	IF	CITATIONS
19	Efficient Initiation of DNA Replication in Eukaryotes Requires Dpb11/TopBP1-GINS Interaction. Molecular and Cellular Biology, 2013, 33, 2614-2622.	2.3	45
20	Loading and activation of <scp>DNA</scp> replicative helicases: the key step of initiation of <scp>DNA</scp> replication. Genes To Cells, 2013, 18, 266-277.	1.2	52
21	Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation. Genes and Genetic Systems, 2011, 86, 141-149.	0.7	27
22	Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO Journal, 2011, 30, 2019-2030.	7.8	53
23	Origin Association of Sld3, Sld7, and Cdc45 Proteins Is a Key Step for Determination of Origin-Firing Timing. Current Biology, 2011, 21, 2055-2063.	3.9	232
24	Multiple Regulatory Mechanisms to Inhibit Untimely Initiation of DNA Replication Are Important for Stable Genome Maintenance. PLoS Genetics, 2011, 7, e1002136.	3.5	35
25	Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma, 2010, 119, 565-574.	2.2	59
26	Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Current Opinion in Cell Biology, 2010, 22, 766-771.	5.4	67
27	Regulatory mechanism of the initiation step of DNA replication by CDK in budding yeast. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 520-523.	2.3	13
28	CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol É›, and GINS in budding yeast. Genes and Development, 2010, 24, 602-612.	5.9	224
29	The Direct Binding of Mrc1, a Checkpoint Mediator, to Mcm6, a Replication Helicase, Is Essential for the Replication Checkpoint against Methyl Methanesulfonate-Induced Stress. Molecular and Cellular Biology, 2009, 29, 5008-5019.	2.3	60
30	Ctf4 coordinates the progression of helicase and DNA polymerase \hat{I}_{\pm} . Genes To Cells, 2009, 14, 807-820.	1.2	82
31	2P-020 Structural study on molecular switching mechanism by phosphorylation of Sld2(Protein:Structure & Function,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S109.	0.1	0
32	CDKâ€dependent assembly of replication proteins at the initiation step of chromosomal DNA replication. FASEB Journal, 2009, 23, 78.3.	0.5	0
33	The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Division, 2007, 2, 16.	2.4	58
34	CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature, 2007, 445, 328-332.	27.8	419
35	A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2–Dpb11. EMBO Journal, 2006, 25, 1987-1996.	7.8	97
36	Historical view of DNA replication studies, with special reference to Japan. IUBMB Life, 2006, 58, 323-327.	3.4	3

Ηιγογικι Αγακι

#	Article	IF	CITATIONS
37	GINS Is a DNA Polymerase ϵ Accessory Factor during Chromosomal DNA Replication in Budding Yeast. Journal of Biological Chemistry, 2006, 281, 21422-21432.	3.4	17
38	Noncompetitive Counteractions of DNA Polymerase ε and ISW2/yCHRAC for Epigenetic Inheritance of Telomere Position Effect in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 217-227.	2.3	119
39	GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes and Development, 2003, 17, 1153-1165.	5.9	320
40	A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes and Development, 2003, 17, 1141-1152.	5.9	181
41	S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature, 2002, 415, 651-655.	27.8	194
42	Dpb11 Controls the Association between DNA Polymerases α and ɛ and the Autonomously Replicating Sequence Region of Budding Yeast. Molecular and Cellular Biology, 2000, 20, 2809-2817.	2.3	169
43	DNA polymerase ε encoded bycdc20+is required for chromosomal DNA replication in the fission yeastSchizosaccharomyces pombe. Genes To Cells, 1998, 3, 99-110.	1.2	17
44	The <i>RFC2</i> Gene, Encoding the Third-Largest Subunit of the Replication Factor C Complex, Is Required for an S-Phase Checkpoint in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 4914-4923.	2.3	84
45	Sld2, Which Interacts with Dpb11 in <i>Saccharomyces cerevisiae</i> , Is Required for Chromosomal DNA Replication. Molecular and Cellular Biology, 1998, 18, 6102-6109.	2.3	160
46	Chromosome Engineering in Yeast with a Site-Specific Recombination System from a Heterologous Yeast Plasmid. , 1996, 53, 217-226.		4
47	TheRFC2gene encoding a subunit of replication factor C ofSaccharomyces cerevisiae. Nucleic Acids Research, 1994, 22, 1527-1535.	14.5	42
48	A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein. Molecular Genetics and Genomics, 1993, 236-236, 283-288.	2.4	58
49	A specific host factor binds at a cis-acting transcriptionally silent locus required for stability control of yeast plasmid pSR1. Molecular Genetics and Genomics, 1993, 238-238, 120-128.	2.4	1
50	Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Journal of Molecular Biology, 1992, 228, 1091-1103.	4.2	27
51	Half-site recombinations mediated by yeast site-specific recombinases Flp and R. Journal of Molecular Biology, 1992, 225, 621-642.	4.2	32
52	Site-specific recombinase, R, encoded by yeast plasmid pSR1. Journal of Molecular Biology, 1992, 225, 25-37.	4.2	46
53	The CDC26 gene of Saccharomyces cerevisiae is required for cell growth only at high temperature. Molecular Genetics and Genomics, 1992, 231, 329-331.	2.4	17
54	Mutations in a Saccharomyces cerevisme host showing increased holding stability of the heterologous plasmid pSRI. Molecular Genetics and Genomics, 1991, 225, 257-265.	2.4	26

Ηιγογικι Αγακι

#	Article	IF	CITATIONS
55	CloningDPB3, the gene encoding the third subunit of DNA polymerase II ofSaccharomyces cerevisiae. Nucleic Acids Research, 1991, 19, 4867-4872.	14.5	98
56	A third essential DNA polymerase in S. cerevisiae. Cell, 1990, 62, 1143-1151.	28.9	365
57	An autonomously replicating sequence of pSRI plasmid is effective in two yeast species, Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Journal of Molecular Biology, 1989, 207, 757-769.	4.2	16
58	Construction of a host-vector system in the osmophilic haploid yeast Zygosaccharomyces rouxii. Journal of Fermentation Technology, 1988, 66, 481-488.	0.5	23
59	Factors encoded by and affecting the holding stability of yeast plasmid pSR1. Molecular Genetics and Genomics, 1987, 206, 88-94.	2.4	23
60	A cis-acting locus for the stable propagation of yeast plasmid pSR1. Molecular Genetics and Genomics, 1987, 207, 355-360.	2.4	16
61	Purification of Bacteriophage T7 DNA-Membrane Complex and Its Application to the In Vitro Recombination Reaction1. Journal of Biochemistry, 1985, 98, 1473-1485.	1.7	0
62	Molecular and functional organization of yeast plasmid pSR1. Journal of Molecular Biology, 1985, 182, 191-203.	4.2	149
63	Novel amber mutants of bacteriophage T7, growth of which depends on Escherichia coli DNA-binding protein. Virology, 1982, 118, 260-262.	2.4	1
64	The participation of T7 DNA-binding protein in T7 genetic recombination. Virology, 1981, 111, 509-515.	2.4	23
65	A T7 amber mutant defective in DNA-Binding protein. Molecular Genetics and Genomics, 1981, 183, 66-73.	2.4	24