Sarah X Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11348536/publications.pdf

Version: 2024-02-01

159585 149698 3,492 63 30 56 citations g-index h-index papers 63 63 63 4398 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emerging roles of circular RNAs in retinal diseases. Neural Regeneration Research, 2022, 17, 1875.	3.0	7
2	Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Molecular Neurodegeneration, 2022, 17, 25.	10.8	26
3	AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. Journal of Clinical Medicine, 2022, 11, 1484.	2.4	8
4	Activation of ATF4 triggers trabecular meshwork cell dysfunction and apoptosis in POAG. Aging, 2021, 13, 8628-8642.	3.1	21
5	Endothelium-specific deletion of Nox4 delays retinal vascular development and mitigates pathological angiogenesis. Angiogenesis, 2020, 24, 363-377.	7.2	17
6	Loss of XBP1 Leads to Early-Onset Retinal Neurodegeneration in a Mouse Model of Type I Diabetes. Journal of Clinical Medicine, 2019, 8, 906.	2.4	16
7	Serum pigment epithelium-derived factor: Relationships with cardiovascular events, renal dysfunction, and mortality in the Veterans Affairs Diabetes Trial (VADT) cohort. Journal of Diabetes and Its Complications, 2019, 33, 107410.	2.3	4
8	Loss of X-box binding protein 1 in Mýller cells augments retinal inflammation in a mouse model of diabetes. Diabetologia, 2019, 62, 531-543.	6.3	28
9	Loss of XBP1 accelerates age-related decline in retinal function and neurodegeneration. Molecular Neurodegeneration, 2018, 13, 16.	10.8	34
10	Molecular Chaperone ERp29: A Potential Target for Cellular Protection in Retinal and Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2018, 1074, 421-427.	1.6	21
11	Reduction of Endoplasmic Reticulum Stress Improves Angiogenic Progenitor Cell function in a Mouse Model of Type 1 Diabetes. Cell Death and Disease, 2018, 9, 467.	6. 3	9
12	Regulation of Nrf2 by X Box-Binding Protein 1 in Retinal Pigment Epithelium. Frontiers in Genetics, 2018, 9, 658.	2.3	17
13	The unfolded protein response signaling and retinal MÃ $\frac{1}{4}$ ller cell metabolism. Neural Regeneration Research, 2018, 13, 1861.	3.0	15
14	Comparative Proteomic Analysis of the Mitochondria-associated ER Membrane (MAM) in a Long-term Type 2 Diabetic Rodent Model. Scientific Reports, 2017, 7, 2062.	3.3	63
15	The Role of IRE-XBP1 Pathway in Regulation of Retinal Pigment Epithelium Tight Junctions. , 2016, 57, 5244.		30
16	p58IPK suppresses NLRP3 inflammasome activation and IL- $1\hat{l}^2$ production via inhibition of PKR in macrophages. Scientific Reports, 2016, 6, 25013.	3.3	34
17	Erp29 Attenuates Cigarette Smoke Extract–Induced Endoplasmic Reticulum Stress and Mitigates Tight Junction Damage in Retinal Pigment Epithelial Cells. , 2015, 56, 6196.		29
18	NADPH Oxidase 4-Derived H _{2} O _{2} Promotes Aberrant Retinal Neovascularization via Activation of VEGF Receptor 2 Pathway in Oxygen-Induced Retinopathy. Journal of Diabetes Research, 2015, 2015, 1-13.	2.3	42

#	Article	IF	CITATIONS
19	Activation of the UPR Protects against Cigarette Smoke-induced RPE Apoptosis through Up-Regulation of Nrf2. Journal of Biological Chemistry, 2015, 290, 5367-5380.	3.4	63
20	ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells. Journal of Inflammation, 2015, 12, 31.	3.4	44
21	Influence of diabetes on ambulation and inflammation in men and women with symptomatic peripheral artery disease. Journal of Clinical and Translational Endocrinology, 2015, 2, 137-143.	1.4	6
22	Identification of p58IPK as a Novel Neuroprotective Factor for Retinal Neurons. Investigative Ophthalmology and Visual Science, 2015, 56, 1374-1386.	3.3	20
23	The unfolded protein response in retinal vascular diseases: Implications and therapeutic potential beyond protein folding. Progress in Retinal and Eye Research, 2015, 45, 111-131.	15.5	61
24	Enhanced endoplasmic reticulum stress in bone marrow angiogenic progenitor cells in a mouse model of long-term experimental type 2 diabetes. Diabetologia, 2015, 58, 2181-2190.	6.3	30
25	Deficiency of CC chemokine ligand 2 and decay-accelerating factor causes retinal degeneration in mice. Experimental Eye Research, 2015, 138, 126-133.	2.6	22
26	Elevated plasma pigment epithelium-derived factor in children with type 2 diabetes mellitus is attributable to obesity. Pediatric Diabetes, 2015, 16, 600-605.	2.9	14
27	The neuroprotective potential of endoplasmic reticulum chaperones. Neural Regeneration Research, 2015, 10, 1211.	3.0	5
28	The Unfolded Protein Response and Diabetic Retinopathy. Journal of Diabetes Research, 2014, 2014, 1-14.	2.3	39
29	Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Experimental Eye Research, 2014, 125, 30-40.	2.6	116
30	Role of Unfolded Protein Response Dysregulation in Oxidative Injury of Retinal Pigment Epithelial Cells. Antioxidants and Redox Signaling, 2014, 20, 2091-2106.	5.4	56
31	Role of p58IPK in Endoplasmic Reticulum Stress-associated Apoptosis and Inflammation. Journal of Ophthalmic and Vision Research, 2014, 9, 134-43.	1.0	10
32	Signaling Pathways Triggered by Oxidative Stress That Mediate Features of Severe Retinopathy of Prematurity. JAMA Ophthalmology, 2013, 131, 80.	2.5	53
33	Quinotrierixin inhibits proliferation of human retinal pigment epithelial cells. Molecular Vision, 2013, 19, 39-46.	1.1	8
34	Activation of Endoplasmic Reticulum Stress by Hyperglycemia Is Essential for Mýller Cell–Derived Inflammatory Cytokine Production in Diabetes. Diabetes, 2012, 61, 492-504.	0.6	161
35	ER Stress and Apoptosis: A New Mechanism for Retinal Cell Death. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	150
36	THE PROTECTIVE EFFECTS OF X-BOX BINDING PROTEIN 1 ON TUMOUR NECROSIS FACTOR-ALPHA INDUCED PRO-INFLAMMATORY RESPONSE. Heart, 2012, 98, E33.3-E34.	2.9	0

3

#	Article	IF	CITATIONS
37	ACTIVATION OF NF-E2-RELATED FACTOR 2 BY X-BOX BINDING PROTEIN 1 PROTECTS ENDOTHELIAL CELLS FROM TUMOUR NECROSIS FACTOR-α INDUCED OXIDATIVE STRESS. Heart, 2012, 98, E93.2-E93.	2.9	0
38	Pigment epithelium-Derived Factor (PEDF) Varies with Body Composition and Insulin Resistance in Healthy Young People. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E2114-E2118.	3.6	18
39	X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium. PLoS ONE, 2012, 7, e38616.	2.5	54
40	Intermittent But Not Constant High Glucose Induces ER Stress and Inflammation in Human Retinal Pericytes. Advances in Experimental Medicine and Biology, 2012, 723, 285-292.	1.6	44
41	Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy. PLoS ONE, 2012, 7, e52699.	2.5	30
42	Endoplasmic reticulum stress and inflammation: mechanisms and implications in diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 51-61.	0.2	21
43	Preconditioning with Endoplasmic Reticulum Stress Mitigates Retinal Endothelial Inflammation via Activation of X-box Binding Protein 1. Journal of Biological Chemistry, 2011, 286, 4912-4921.	3.4	107
44	Inhibition of Reactive Oxygen Species by Lovastatin Downregulates Vascular Endothelial Growth Factor Expression and Ameliorates Blood-Retinal Barrier Breakdown in <i>db</i> /i>/ci>db Mice. Diabetes, 2010, 59, 1528-1538.	0.6	183
45	Pigment epithelium-derived factor suppresses adipogenesis via inhibition of the MAPK/ERK pathway in 3T3-L1 preadipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1378-E1387.	3.5	66
46	Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Letters, 2009, 583, 1521-1527.	2.8	189
47	Systemic administration of HMG-CoA reductase inhibitor protects the blood–retinal barrier and ameliorates retinal inflammation in type 2 diabetes. Experimental Eye Research, 2009, 89, 71-78.	2.6	66
48	Increased serum pigment epithelium derived factor levels in Type 2 diabetes patients. Diabetes Research and Clinical Practice, 2008, 82, e5-e7.	2.8	68
49	Pigment epithelium-derived factor mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized low-density lipoprotein. Journal of Molecular Endocrinology, 2008, 41, 135-143.	2.5	65
50	Anti-inflammatory effects of pigment epithelium-derived factor in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2008, 294, F1166-F1173.	2.7	69
51	Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Progress in Retinal and Eye Research, 2007, 26, 1-37.	15.5	188
52	Salutary Effect of Pigment Epithelium–Derived Factor in Diabetic Nephropathy. Diabetes, 2006, 55, 1678-1685.	0.6	84
53	Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF–VEGF receptor 2 binding in diabetic retinopathy. Journal of Molecular Endocrinology, 2006, 37, 1-12.	2.5	238
54	Pigment epitheliumâ€derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB Journal, 2006, 20, 323-325.	0.5	276

#	Article	IF	CITATION
55	Therapeutic Potential of Angiostatin in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2006, 17, 475-486.	6.1	60
56	Deletion of Smooth Muscle α-Actin Alters Blood–Retina Barrier Permeability and Retinal Function. , 2006, 47, 2693.		33
57	Endogenous Angiogenic Inhibitors in Diabetic Retinopathy. , 2006, , 23-44.		1
58	Down-Regulation of Angiogenic Inhibitors: A Potential Pathogenic Mechanism for Diabetic Complications. Current Diabetes Reviews, 2005, 1, 183-196.	1.3	17
59	Decreased Expression of Pigment Epithelium-Derived Factor Is Involved in the Pathogenesis of Diabetic Nephropathy. Diabetes, 2005, 54, 243-250.	0.6	79
60	Systemic and Periocular Deliveries of Plasminogen Kringle 5 Reduce Vascular Leakage in Rat Models of Oxygen-Induced Retinopathy and Diabetes. Current Eye Research, 2005, 30, 681-689.	1.5	19
61	Genetic Difference in Susceptibility to the Blood-Retina Barrier Breakdown in Diabetes and Oxygen-Induced Retinopathy. American Journal of Pathology, 2005, 166, 313-321.	3.8	92
62	Suppression of Corneal Neovascularization by PEDF Release from Human Amniotic Membranes. , 2004, 45, 1758.		102
63	The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Letters, 2004, 564, 19-23.	2.8	44