Varsha Shriram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11345292/publications.pdf

Version: 2024-02-01

394421 477307 2,025 37 19 29 citations h-index g-index papers 38 38 38 2702 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop Journal, 2016, 4, 162-176.	5.2	695
2	MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 2016, 7, 817.	3 . 6	299
3	Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports, 2010, 4, 37-48.	1.5	168
4	Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Frontiers in Microbiology, 2018, 9, 2990.	3.5	124
5	Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Reports, 2018, 37, 61-75.	5. 6	87
6	A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. International Journal of Antimicrobial Agents, 2008, 32, 405-410.	2.5	64
7	Microplastic-associated pathogens and antimicrobial resistance in environment. Chemosphere, 2022, 291, 133005.	8.2	58
8	Antimicrobial potentials of Helicteres isora silver nanoparticles against extensively drug-resistant (XDR) clinical isolates of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2015, 99, 10655-10667.	3.6	57
9	Antioxidant and DNA damage protecting activities of Eulophia nuda Lindl Free Radicals and Antioxidants, 2013, 3, 55-60.	0.3	54
10	Sodium Chloride-Induced Changes in Mineral Nutrients and Proline Accumulation in Indica Rice Cultivars Differing in Salt Tolerance. Journal of Plant Nutrition, 2008, 31, 1999-2017.	1.9	44
11	Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnology Advances, 2021, 48, 107729.	11.7	39
12	Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance. Archives of Agronomy and Soil Science, 2009, 55, 379-394.	2.6	34
13	Cytotoxic activity of 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda against human cancer cells. Journal of Ethnopharmacology, 2010, 128, 251-253.	4.1	32
14	Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Frontiers in Microbiology, 2021, 12, 747019.	3.5	31
15	Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environmental Research, 2021, 199, 111321.	7.5	28
16	Indirect organogenesis and plant regeneration in Helicteres isora L., an important medicinal plant. In Vitro Cellular and Developmental Biology - Plant, 2008, 44, 186-193.	2.1	22
17	Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Archives of Agronomy and Soil Science, 2007, 53, 581-592.	2.6	21
18	Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. Physiology and Molecular Biology of Plants, 2020, 26, 593-604.	3.1	21

#	Article	IF	CITATIONS
19	Biologically synthesized nanomaterials and their antimicrobial potentials. Comprehensive Analytical Chemistry, 2019, , 263-289.	1.3	20
20	Hairy Root Induction in Helicteres isora L. and Production of Diosgenin in Hairy Roots. Natural Products and Bioprospecting, 2014, 4, 107-112.	4.3	17
21	Asymbiotic In vitro Seed Germination and Seedling Development of Eulophia nuda Lindl., An Endangered Medicinal Orchid. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 837-846.	1.0	14
22	Efficacy of Helicteres isora L. against free radicals, lipid peroxidation, protein oxidation and DNA damage. Journal of Pharmacy Research, 2013, 6, 620-625.	0.4	12
23	RNAi Technology: The Role in Development of Abiotic Stress-Tolerant Crops., 2018,, 117-133.		12
24	Phytochemical profile, anti-oxidant, anti-inflammatory, and anti-proliferative activities of Pogostemon deccanensis essential oils. 3 Biotech, 2019, 9, 31.	2.2	11
25	Genome-wide in silico identification and characterization of sodium-proton (Na+/H+) antiporters in Indica rice. Plant Gene, 2021, 26, 100280.	2.3	9
26	Engineering Phytohormones for Abiotic Stress Tolerance in Crop Plants. , 2016, , 247-266.		8
27	Oxidative Stress and Leaf Senescence: Important Insights. , 2019, , 139-163.		8
28	Antibacterial & antiplasmid activities of Helicteres isora L. Indian Journal of Medical Research, 2010, 132, 94-9.	1.0	6
29	Effects of Toxic Gases, Ozone, Carbon Dioxide, and Wastes on Plant Secondary Metabolism., 2017,, 81-96.		4
30	Advances in Biotechnological Tools. , 2019, , 615-632.		4
31	Establishment of Callus and Cell Suspension Cultures of Helicteres isora L Research in Plant Biology, 0, , 01-07.	0.0	4
32	Nrf2/HO-1 Mediated Antioxidant Activities, Cytotoxicity Analysis and LCESI/ MS Profiling of Eulophia nuda L Natural Products Journal, 2020, 10, 69-79.	0.3	4
33	Transcriptional and postâ€transcriptional mechanisms regulating salt tolerance in plants. Physiologia Plantarum, 2021, 173, 1291-1294.	5.2	4
34	In vitro regeneration and ploidy level analysis of Eulophia ochreata Lindl. Indian Journal of Experimental Biology, 2014, 52, 1112-21.	0.0	3
35	Nano-Boehmite Induced Oxidative and Nitrosative Stress Responses in Vigna radiata L Journal of Plant Growth Regulation, 0 , 1 .	5.1	1
36	Eulophia spp.: In Vitro Generation, Chemical Constituents, and Pharmacological Activities. Reference Series in Phytochemistry, 2022, , 495-516.	0.4	1

#	Article	IF	CITATIONS
37	Eulophia spp.: In Vitro Generation, Chemical Constituents, and Pharmacological Activities. Reference Series in Phytochemistry, 2021, , 1-23.	0.4	0