Han-Ming Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of <i>Atg</i> genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing. Autophagy, 2023, 19, 706-715.	4.3	5
2	Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy, 2022, 18, 1240-1255.	4.3	87
3	ANKRD13a controls early cell-death checkpoint by interacting with RIP1 independent of NF-κB. Cell Death and Differentiation, 2022, 29, 1152-1163.	5.0	6
4	Impairment of the autophagy–lysosomal pathway in Alzheimer's diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharmaceutica Sinica B, 2022, 12, 1019-1040.	5.7	56
5	Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nature Biomedical Engineering, 2022, 6, 76-93.	11.6	110
6	Oâ€GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a proâ€survival mechanism in cancer cells. Proteomics, 2022, 22, e2100175.	1.3	9
7	NAMPT mitigates colitis severity by supporting redox-sensitive activation of phagocytosis in inflammatory macrophages. Redox Biology, 2022, 50, 102237.	3.9	15
8	Toosendanin, a novel potent vacuolar-type H ⁺ -translocating ATPase inhibitor, sensitizes cancer cells to chemotherapy by blocking protective autophagy. International Journal of Biological Sciences, 2022, 18, 2684-2702.	2.6	12
9	Post-translational Modification in Control of SIRT1 Stability during DNA Damage Response. International Journal of Biological Sciences, 2022, 18, 2655-2669.	2.6	4
10	WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP. Autophagy, 2022, 18, 2865-2879.	4.3	8
11	Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharmaceutica Sinica B, 2022, 12, 2300-2314.	5.7	84
12	PFKP alleviates glucose starvation-induced metabolic stress in lung cancer cells via AMPK-ACC2 dependent fatty acid oxidation. Cell Discovery, 2022, 8, .	3.1	16
13	A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nature Communications, 2022, 13, .	5.8	40
14	Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y12 signaling pathway. Cellular and Molecular Immunology, 2021, 18, 1278-1289.	4.8	41
15	Garciesculenxanthone B induces PINK1-Parkin-mediated mitophagy and prevents ischemia-reperfusion brain injury in mice. Acta Pharmacologica Sinica, 2021, 42, 199-208.	2.8	28
16	Quercetin induces p53â€independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Speciesâ€dependent ferroptosis. British Journal of Pharmacology, 2021, 178, 1133-1148.	2.7	113
17	Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biology, 2021, 38, 101776.	3.9	56
18	Oxidative Stress in Cell Signaling and Cell Fate Determination Under Glucose Starvation. , 2021, , 293-323.		0

#	Article	IF	CITATIONS
19	Hydroxychloroquine/Chloroquine as Therapeutics for COVID-19: Truth under the Mystery. International Journal of Biological Sciences, 2021, 17, 1538-1546.	2.6	24
20	Essential role for autophagy protein VMP1 in maintaining neuronal homeostasis and preventing axonal degeneration. Cell Death and Disease, 2021, 12, 116.	2.7	20
21	Oxidative stress-mediated AMPK inactivation determines the high susceptibility of LKB1-mutant NSCLC cells to glucose starvation. Free Radical Biology and Medicine, 2021, 166, 128-139.	1.3	17
22	DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nature Communications, 2021, 12, 2284.	5.8	28
23	Epigenetic Regulation of Autophagy Beyond the Cytoplasm: A Review. Frontiers in Cell and Developmental Biology, 2021, 9, 675599.	1.8	16
24	Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy. Acta Pharmaceutica Sinica B, 2021, 11, 3966-3982.	5.7	28
25	A Destiny for Degradation: Interplay between Cullin-RING E3 Ligases and Autophagy. Trends in Cell Biology, 2021, 31, 432-444.	3.6	15
26	Tailorable Membraneâ€Penetrating Nanoplatform for Highly Efficient Organelleâ€&pecific Localization. Small, 2021, 17, 2101440.	5.2	2
27	Targeting CD82/KAI1 for Precision Therapeutics in Surmounting Metastatic Potential in Breast Cancer. Cancers, 2021, 13, 4486.	1.7	3
28	Mitoâ€Bomb: Targeting Mitochondria for Cancer Therapy. Advanced Materials, 2021, 33, e2007778.	11.1	168
29	Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. Burns and Trauma, 2021, 9, tkab008.	2.3	18
30	Mitoâ€Bomb: Targeting Mitochondria for Cancer Therapy (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170340.	11.1	5
31	Cholesterol-enriched membrane micro-domain deficiency induces doxorubicin resistance via promoting autophagy in breast cancer. Molecular Therapy - Oncolytics, 2021, 23, 311-329.	2.0	6
32	Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends in Biochemical Sciences, 2020, 45, 58-75.	3.7	71
33	Autophagy and Tumor Database: ATdb, a novel database connecting autophagy and tumor. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	12
34	The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals, 2020, 13, 432.	1.7	32
35	The Long and the Short of PTEN in the Regulation of Mitophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 299.	1.8	19
36	Seeing is believing: a novel tool for quantitating mitophagy. Cell Research, 2020, 30, 715-716.	5.7	2

#	Article	IF	CITATIONS
37	Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19. International Journal of Biological Sciences, 2020, 16, 1724-1731.	2.6	351
38	3â€ <i>O</i> â€acetylrubianol C (3AR) induces RIPK1â€dependent programmed cell death by selective inhibition of IKKβ. FASEB Journal, 2020, 34, 4369-4383.	0.2	4
39	Bone marrow stromal cellâ€derived growth inhibitor serves as a stress sensor to induce autophagy. FEBS Letters, 2020, 594, 1248-1260.	1.3	2
40	Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radical Biology and Medicine, 2020, 153, 173-186.	1.3	26
41	Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology, 2019, 13, 1117-1132.	1.6	125
42	The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy, 2019, 15, 827-842.	4.3	64
43	STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nature Communications, 2019, 10, 2059.	5.8	90
44	Lysosomal inhibition attenuates peroxisomal gene transcription via suppression of PPARA and PPARGC1A levels. Autophagy, 2019, 15, 1455-1459.	4.3	31
45	Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation. Autophagy, 2019, 15, 1917-1934.	4.3	45
46	Critical role of AMPK in redox regulation under glucose starvation. Redox Biology, 2019, 25, 101154.	3.9	118
47	Dysregulated autophagy in COPD: A pathogenic process to be deciphered. Pharmacological Research, 2019, 144, 1-7.	3.1	35
48	A Novel Scoring System for Pivotal Autophagy-Related Genes Predicts Outcomes after Chemotherapy in Advanced Ovarian Cancer Patients. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 2106-2114.	1.1	7
49	Myricetin inhibits NLRP3 inflammasome activation via reduction of ROS-dependent ubiquitination of ASC and promotion of ROS-independent NLRP3 ubiquitination. Toxicology and Applied Pharmacology, 2019, 365, 19-29.	1.3	41
50	Oblongifolin C suppresses lysosomal function independently of TFEB nuclear translocation. Acta Pharmacologica Sinica, 2019, 40, 929-937.	2.8	10
51	Dual role of autophagy in hallmarks of cancer. Oncogene, 2018, 37, 1142-1158.	2.6	403
52	Cubic membrane formation supports cell survival of amoeba Chaos under starvation-induced stress. Protoplasma, 2018, 255, 517-525.	1.0	10
53	Andrographolide simultaneously augments Nrf2 antioxidant defense and facilitates autophagic flux blockade in cigarette smoke-exposed human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2018, 360, 120-130.	1.3	41
54	Docetaxel enhances lysosomal function through TFEB activation. Cell Death and Disease, 2018, 9, 614.	2.7	23

#	Article	IF	CITATIONS
55	PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1–Parkin-mediated mitophagy. Cell Research, 2018, 28, 787-802.	5.7	124
56	SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. Experimental Cell Research, 2018, 370, 283-291.	1.2	18
57	Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy, 2018, 14, 1-17.	4.3	68
58	PTEN-L puts a brake on mitophagy. Autophagy, 2018, 14, 2023-2025.	4.3	13
59	Targeting the potent Beclin 1–UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5669-E5678.	3.3	45
60	Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nature Protocols, 2017, 12, 279-288.	5.5	48
61	Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Scientific Reports, 2017, 7, 43745.	1.6	16
62	Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biology, 2017, 12, 198-207.	3.9	51
63	Recent advances in quantitative and chemical proteomics for autophagy studies. Autophagy, 2017, 13, 1472-1486.	4.3	22
64	Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Medicinal Research Reviews, 2017, 37, 1492-1517.	5.0	178
65	Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity. ACS Central Science, 2017, 3, 743-750.	5.3	86
66	Target identification with quantitative activity based protein profiling (ABPP). Proteomics, 2017, 17, 1600212.	1.3	45
67	Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget, 2017, 8, 10359-10374.	0.8	56
68	Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging. Methods in Enzymology, 2017, 588, 41-59.	0.4	11
69	Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach—Based on a Target Profiling Study of Andrographolide. Methods in Enzymology, 2017, 586, 291-309.	0.4	13
70	Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Molecular Cancer, 2017, 16, 118.	7.9	251
71	Chronically high level of <i>tgfb1a</i> induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget, 2017, 8, 77096-77109.	0.8	25
72	CRISPR system for genome engineering: the application for autophagy study. BMB Reports, 2017, 50, 247-256.	1.1	2

#	Article	IF	CITATIONS
73	FBS or BSA Inhibits EGCG Induced Cell Death through Covalent Binding and the Reduction of Intracellular ROS Production. BioMed Research International, 2016, 2016, 1-8.	0.9	18
74	Curcumin targets the TFEB-lysosome pathway for induction of autophagy. Oncotarget, 2016, 7, 75659-75671.	0.8	107
75	Mechanismâ€Guided Design and Synthesis of a Mitochondriaâ€Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angewandte Chemie - International Edition, 2016, 55, 13770-13774.	7.2	89
76	Mechanismâ€Guided Design and Synthesis of a Mitochondriaâ€Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angewandte Chemie, 2016, 128, 13974-13978.	1.6	13
77	linQ attenuates systemic inflammatory responses via selectively impairing the Myddosome complex formation upon TLR4 ligation. Biochemical Pharmacology, 2016, 121, 52-66.	2.0	14
78	Quantitative chemical proteomics profiling of <i>de novo</i> protein synthesis during starvation-mediated autophagy. Autophagy, 2016, 12, 1931-1944.	4.3	37
79	Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation. Scientific Reports, 2016, 6, 25094.	1.6	16
80	In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line. Scientific Reports, 2016, 6, 22146.	1.6	83
81	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
82	Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacological Research, 2016, 105, 164-175.	3.1	83
83	CCAAT/enhancer binding protein α predicts poorer prognosis and prevents energy starvation–induced cell death in hepatocellular carcinoma. Hepatology, 2015, 61, 965-978.	3.6	65
84	Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports, 2015, 5, 7896.	1.6	66
85	PRL-3 activates mTORC1 in Cancer Progression. Scientific Reports, 2015, 5, 17046.	1.6	22
86	Brazilin Limits Inflammatory Responses through Induction of Prosurvival Autophagy in Rheumatoid Fibroblast-Like Synoviocytes. PLoS ONE, 2015, 10, e0136122.	1.1	27
87	The Role of Autophagy in Liver Diseases: Mechanisms and Potential Therapeutic Targets. BioMed Research International, 2015, 2015, 1-2.	0.9	35
88	Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy, 2015, 11, 1711-1728.	4.3	143
89	Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nature Communications, 2015, 6, 10111.	5.8	486
90	A Smallâ€Molecule Protein–Protein Interaction Inhibitor of PARP1 That Targets Its BRCT Domain. Angewandte Chemie, 2015, 127, 2545-2549.	1.6	11

#	Article	IF	CITATIONS
91	A Smallâ€Molecule Protein–Protein Interaction Inhibitor of PARP1 That Targets Its BRCT Domain. Angewandte Chemie - International Edition, 2015, 54, 2515-2519.	7.2	38
92	Selenite-Induced Toxicity in Cancer Cells Is Mediated by Metabolic Generation of Endogenous Selenium Nanoparticles. Journal of Proteome Research, 2015, 14, 1127-1136.	1.8	54
93	Integrated and comparative miRNA analysis of starvation-induced autophagy in mouse embryonic fibroblasts. Gene, 2015, 571, 194-204.	1.0	7
94	A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy, 2015, 11, 1259-1279.	4.3	201
95	Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy, 2015, 11, 629-642.	4.3	155
96	Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 2015, 11, 769-784.	4.3	112
97	Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics. Journal of Biological Chemistry, 2015, 290, 24961-24974.	1.6	32
98	AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Molecular Cell, 2015, 60, 930-940.	4.5	222
99	20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget, 2014, 5, 4438-4451.	0.8	92
100	Artesunate Induces Cell Death in Human Cancer Cells via Enhancing Lysosomal Function and Lysosomal Degradation of Ferritin. Journal of Biological Chemistry, 2014, 289, 33425-33441.	1.6	128
101	A role of autophagy in PTP4A3-driven cancer progression. Autophagy, 2014, 10, 1787-1800.	4.3	40
102	Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin) Journal of Biological Chemistry, 2014, 289, 9501.	1.6	2
103	A Quantitative Chemical Proteomics Approach to Profile the Specific Cellular Targets of Andrographolide, a Promising Anticancer Agent That Suppresses Tumor Metastasis. Molecular and Cellular Proteomics, 2014, 13, 876-886.	2.5	88
104	Autophagic Cell Death: A Real Killer, an Accomplice, or an Innocent Bystander?. , 2014, , 211-232.		0
105	Autophagy in Necrosis: A Force for Survival. , 2014, , 233-252.		0
106	A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene, 2014, 33, 3004-3013.	2.6	102
107	At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in Biochemical Sciences, 2014, 39, 61-71.	3.7	295
108	Individual and area-level socioeconomic status and their association with depression amongst community-dwelling elderly in Singapore. Aging and Mental Health, 2014, 18, 628-641.	1.5	38

#	Article	IF	CITATIONS
109	Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy, 2014, 10, 901-912.	4.3	54
110	Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy, 2014, 10, 226-242.	4.3	57
111	The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. Journal of Atherosclerosis and Thrombosis, 2014, 21, 854-867.	0.9	6
112	Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer, 2013, 13, 601.	1.1	39
113	AMPK mediates a proâ€survival autophagy downstream of PARPâ€1 activation in response to DNA alkylating agents. FEBS Letters, 2013, 587, 170-177.	1.3	29
114	Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research, 2013, 23, 508-523.	5.7	340
115	The role of autophagy in liver cancer: Molecular mechanisms and potential therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1836, 15-26.	3.3	76
116	Design and Synthesis of Minimalist Terminal Alkyneâ€Containing Diazirine Photoâ€Crosslinkers and Their Incorporation into Kinase Inhibitors for Cell―and Tissueâ€Based Proteome Profiling. Angewandte Chemie - International Edition, 2013, 52, 8551-8556.	7.2	281
117	Dual suppressive effect of MTORC1 on autophagy. Autophagy, 2013, 9, 803-805.	4.3	16
118	PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65. Nature Communications, 2013, 4, 2062.	5.8	54
119	Hydrogen Sulfide Protects HUVECs against Hydrogen Peroxide Induced Mitochondrial Dysfunction and Oxidative Stress. PLoS ONE, 2013, 8, e53147.	1.1	141
120	Modulation of Autophagy as a Novel Cancer Therapeutic Strategy. , 2013, , 175-203.		0
121	Autophagy Is a Cell Self-Protective Mechanism Against Arsenic-Induced Cell Transformation. Toxicological Sciences, 2012, 130, 298-308.	1.4	83
122	Induction of Autophagy by Palmitic Acid via Protein Kinase C-mediated Signaling Pathway Independent of mTOR (Mammalian Target of Rapamycin). Journal of Biological Chemistry, 2012, 287, 14364-14376.	1.6	144
123	Individual and Area Level Socioeconomic Status and Its Association with Cognitive Function and Cognitive Impairment (Low MMSE) among Community-Dwelling Elderly in Singapore. Dementia and Geriatric Cognitive Disorders Extra, 2012, 2, 529-542.	0.6	65
124	Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy, 2012, 8, 98-108.	4.3	156
125	Autophagy. Autophagy, 2012, 8, 1477-1493.	4.3	67
126	Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy, 2012, 8, 338-349.	4.3	100

#	Article	IF	CITATIONS
127	Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: A new in vivo model for investigation of liver autophagy. Biochemical and Biophysical Research Communications, 2012, 422, 268-273.	1.0	33
128	Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Letters, 2012, 314, 8-23.	3.2	62
129	Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy, 2012, 8, 559-576.	4.3	107
130	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
131	Use of inducible Atg5 deletion and expression cell lines in study of the pro-survival function of autophagy under starvation. Biochemical and Biophysical Research Communications, 2012, 427, 11-17.	1.0	6
132	Autophagy is a survival force via suppression of necrotic cell death. Experimental Cell Research, 2012, 318, 1304-1308.	1.2	70
133	(â^')-Epigallocatechin-3-Gallate Induces Non-Apoptotic Cell Death in Human Cancer Cells via ROS-Mediated Lysosomal Membrane Permeabilization. PLoS ONE, 2012, 7, e46749.	1.1	68
134	Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy, 2011, 7, 1173-1186.	4.3	66
135	Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicology in Vitro, 2011, 25, 630-635.	1.1	59
136	zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC–MAPKs–AP-1 pathway. Cell Death and Differentiation, 2011, 18, 26-37.	5.0	160
137	Autophagic cell death: Loch Ness monster or endangered species?. Autophagy, 2011, 7, 457-465.	4.3	298
138	Enhanced Autophagy from Chronic Toxicity of Iron and Mutant A53T α-Synuclein. Journal of Biological Chemistry, 2011, 286, 33380-33389.	1.6	82
139	mTOR Complex 2 Targets Akt for Proteasomal Degradation via Phosphorylation at the Hydrophobic Motif. Journal of Biological Chemistry, 2011, 286, 14190-14198.	1.6	61
140	Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochemical Pharmacology, 2010, 79, 1242-1250.	2.0	103
141	Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death and Differentiation, 2010, 17, 1830-1841.	5.0	84
142	Chrysin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB. Cancer Letters, 2010, 293, 109-116.	3.2	89
143	Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt–GSK-3β–Cyclin D1 pathway. Cancer Letters, 2010, 298, 167-175.	3.2	69
144	Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2010, 285, 10850-10861.	1.6	942

#	Article	IF	CITATIONS
145	To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy, 2009, 5, 273-276.	4.3	97
146	NFκB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 348-363.	2.2	260
147	A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death and Differentiation, 2009, 16, 264-277.	5.0	101
148	Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: Implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration. Journal of Hepatology, 2009, 51, 67-76.	1.8	34
149	Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy, 2009, 5, 824-834.	4.3	200
150	Reactive Oxygen Species in Cell Fate Decisions. , 2009, , 199-221.		5
151	Protective Effect of Ebselen on Aflatoxin B1-Induced Cytotoxicity in Primary Rat Hepatocytes. Basic and Clinical Pharmacology and Toxicology, 2008, 86, 156-161.	0.0	0
152	Signaling pathways from membrane lipid rafts to JNK1 activation in reactive nitrogen species-induced non-apoptotic cell death. Cell Death and Differentiation, 2008, 15, 386-397.	5.0	22
153	Critical role of Bid and Bax in indirubin-3′-monoxime-induced apoptosis in human cancer cells. Biochemical Pharmacology, 2008, 75, 1729-1742.	2.0	33
154	Hepatitis B virus infection contributes to oxidative stress in a population exposed to aflatoxin B1 and high-risk for hepatocellular carcinoma. Cancer Letters, 2008, 263, 212-222.	3.2	52
155	Novel synthetic luteolin analogue-caused sensitization of tumor necrosis factor-α-induced apoptosis in human tumor cells. Organic and Biomolecular Chemistry, 2008, 6, 4102.	1.5	8
156	Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy, 2008, 4, 457-466.	4.3	165
157	Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Molecular Cancer Therapeutics, 2008, 7, 2170-2180.	1.9	106
158	Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Current Cancer Drug Targets, 2008, 8, 634-646.	0.8	855
159	Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase–mediated p53 phosphorylation and stabilization. Molecular Cancer Therapeutics, 2007, 6, 1338-1347.	1.9	82
160	Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells. Carcinogenesis, 2007, 28, 1937-1945.	1.3	64
161	Evaluation of oxidative stress in a group of adolescents exposed to a high level of aflatoxin B1 a multi-center and multi-biomarker study. Carcinogenesis, 2007, 28, 2347-2354.	1.3	25
162	Highly Efficient Threonine-Derived Organocatalysts for Direct Asymmetric Aldol Reactions in Water. Advanced Synthesis and Catalysis, 2007, 349, 812-816.	2.1	207

#	Article	IF	CITATIONS
163	Anti-cancer properties of anthraquinones from rhubarb. Medicinal Research Reviews, 2007, 27, 609-630.	5.0	483
164	Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 848, 215-225.	1.2	169
165	Anticancer effects of aloe-emodin on HepG2 cells: Cellular and proteomic studies. Proteomics - Clinical Applications, 2007, 1, 410-419.	0.8	26
166	c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death and Differentiation, 2007, 14, 1001-1010.	5.0	90
167	ls correction for protein concentration appropriate for protein adduct dosimetry? Hypothesis and clues from an aflatoxin B1-exposed population. Cancer Science, 2007, 98, 140-146.	1.7	11
168	Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cellular and Molecular Life Sciences, 2007, 64, 979-988.	2.4	30
169	The Pro- and Antioxidant Role of Glutathione in Selenite-induced Oxidative Stress and Apoptosis. Annals of the New York Academy of Sciences, 2006, 928, 355-355.	1.8	1
170	TNF receptor superfamilyâ€induced cell death: redoxâ€dependent execution. FASEB Journal, 2006, 20, 1589-1598.	0.2	274
171	JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology and Medicine, 2006, 40, 928-939.	1.3	562
172	Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochemical Pharmacology, 2006, 72, 132-144.	2.0	153
173	Emodin Inhibits Tumor Cell Adhesion through Disruption of the Membrane Lipid Raft-Associated Integrin Signaling Pathway. Cancer Research, 2006, 66, 5807-5815.	0.4	117
174	Methyl-3-indolylacetate inhibits cancer cell invasion by targeting the MEK1/2-ERK1/2 signaling pathway. Molecular Cancer Therapeutics, 2006, 5, 3285-3293.	1.9	22
175	IKKβ programs to turn on the GADD45α–MKK4–JNK apoptotic cascade specifically via p50 NF-κB in arsenite response. Journal of Cell Biology, 2006, 175, 607-617.	2.3	98
176	Proteomic Analysis of Colorectal Cancer Reveals Alterations in Metabolic Pathways. Molecular and Cellular Proteomics, 2006, 5, 1119-1130.	2.5	139
177	Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cellular and Molecular Life Sciences, 2005, 62, 1167-1175.	2.4	83
178	Associated Factors in Modulating Aflatoxin B1?Albumin Adduct Level in Three Chinese Populations. Digestive Diseases and Sciences, 2005, 50, 525-532.	1.1	24
179	Anti-Cancer Potential of Sesquiterpene Lactones: Bioactivity and Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 239-249.	7.0	309
180	Protein Kinase C Inhibition and X-Linked Inhibitor of Apoptosis Protein Degradation Contribute to the Sensitization Effect of Luteolin on Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Induced Apoptosis in Cancer Cells. Cancer Research, 2005, 65, 7815-7823.	0.4	93

#	Article	IF	CITATIONS
181	Down-regulation of c-FLIP contributes to the sensitization effect of 3,3′-diindolylmethane on TRAIL-induced apoptosis in cancer cells. Molecular Cancer Therapeutics, 2005, 4, 1972-1981.	1.9	37
182	Parthenolide sensitizes ultraviolet (UV)-B-induced apoptosis via protein kinase C-dependent pathways. Carcinogenesis, 2005, 26, 2149-2156.	1.3	21
183	Knowledge and beliefs on corneal donation in Singapore adults. British Journal of Ophthalmology, 2005, 89, 835-840.	2.1	49
184	Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis. World Journal of Gastroenterology, 2005, 11, 3990.	1.4	87
185	Tumor Necrosis Factor-induced Nonapoptotic Cell Death Requires Receptor-interacting Protein-mediated Cellular Reactive Oxygen Species Accumulation. Journal of Biological Chemistry, 2004, 279, 10822-10828.	1.6	368
186	Suppressed NF-ÂB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-Â-induced apoptosis in human cancer cells. Carcinogenesis, 2004, 25, 2191-2199.	1.3	99
187	Essential Roles of Receptor-Interacting Protein and TRAF2 in Oxidative Stress-Induced Cell Death. Molecular and Cellular Biology, 2004, 24, 5914-5922.	1.1	139
188	Concerns over Participation in Genetic Research among Malay-Muslims, Chinese and Indians in Singapore: A Focus Group Study. Public Health Genomics, 2004, 7, 44-54.	0.6	22
189	Chemopreventive activity of parthenolide against UVB-induced skin cancer and its mechanisms. Carcinogenesis, 2004, 25, 1449-1458.	1.3	65
190	Luteolin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells. Oncogene, 2004, 23, 7712-7721.	2.6	95
191	Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters, 2004, 208, 143-153.	3.2	440
192	Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Letters, 2004, 211, 175-188.	3.2	77
193	Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-l̂ºB. Biochemical Pharmacology, 2004, 68, 361-371.	2.0	128
194	The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 534, 155-163.	0.9	175
195	Exposure to acrylonitrile induced DNA strand breakage and sex chromosome aneuploidy in human spermatozoa. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 537, 93-100.	0.9	44
196	Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG1: A study of adolescents in a high risk region for hepatocellular carcinoma in China. World Journal of Gastroenterology, 2003, 9, 2186.	1.4	24
197	Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality. Human Reproduction, 2002, 17, 1266-1273.	0.4	150
198	Calpain Activation after Mitochondrial Permeability Transition in Microcystin-Induced Cell Death in Rat Hepatocytes. Biochemical and Biophysical Research Communications, 2002, 291, 321-331.	1.0	97

#	Article	IF	CITATIONS
199	Biomarkers for Male Reproductive health hazards: Are they available?. Toxicology Letters, 2002, 134, 17-30.	0.4	52
200	Intracellular glutathione is a cofactor in methylseleninic acid-induced apoptotic cell death of human hepatoma HEPG2 cells. Free Radical Biology and Medicine, 2002, 33, 552-561.	1.3	38
201	Pivotal Role of Mitochondrial Ca2+ in Microcystin-Induced Mitochondrial Permeability Transition in Rat Hepatocytes. Biochemical and Biophysical Research Communications, 2001, 285, 1155-1161.	1.0	62
202	Protection of Salvia Miltiorrhiza against aflatoxin-B1-induced hepatocarcinogenesis in Fischer 344 rats. Life Sciences, 2001, 69, 309-326.	2.0	30
203	Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia Miltiorrhiza-induced apoptosis in human hepatoma HepC2 cells. Life Sciences, 2001, 69, 1833-1850.	2.0	86
204	CRITICAL ROLE OF REACTIVE OXYGEN SPECIES FORMATION IN MICROCYSTIN-INDUCED CYTOSKELETON DISRUPTION IN PRIMARY CULTURED HEPATOCYTES. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2001, 64, 507-519.	1.1	131
205	Reactive oxygen species and caspase activation mediate silica-induced apoptosis in alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L10-L17.	1.3	49
206	Critical Role of Calcium Overloading in Cadmium-Induced Apoptosis in Mouse Thymocytes. Toxicology and Applied Pharmacology, 2001, 171, 12-19.	1.3	61
207	Cadmiumâ€induced apoptosis and phenotypic changes in mouse thymocytes. Molecular and Cellular Biochemistry, 2001, 222, 11-20.	1.4	48
208	Superoxide radical–initiated apoptotic signalling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radical Biology and Medicine, 2001, 30, 9-21.	1.3	109
209	DETECTION OF OXIDATIVE DNA DAMAGE IN HUMAN SPERM AND ITS ASSOCIATION WITH SPERM FUNCTION AND MALE INFERTILITY. , 2001, , 89-96.		0
210	Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes. , 2001, , 11-20.		14
211	Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radical Biology and Medicine, 2000, 28, 1115-1124.	1.3	105
212	Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radical Biology and Medicine, 2000, 28, 529-536.	1.3	243
213	Vanadate Induces p53 Transactivation through Hydrogen Peroxide and Causes Apoptosis. Journal of Biological Chemistry, 2000, 275, 32516-32522.	1.6	163
214	Inhibition of ebselen on aflatoxin B1-induced hepatocarcinogenesis in Fischer 344 rats. Carcinogenesis, 2000, 21, 2237-2243.	1.3	41
215	Ebselen Induces Apoptosis in HepG2 Cells through Rapid Depletion of Intracellular Thiols. Archives of Biochemistry and Biophysics, 2000, 374, 142-152.	1.4	98
216	Intracellular Thiol Depletion Causes Mitochondrial Permeability Transition in Ebselen-Induced Apoptosis. Archives of Biochemistry and Biophysics, 2000, 380, 319-330.	1.4	65

#	Article	IF	CITATIONS
217	Involvement of Oxidative Stress in Crystalline Silica-Induced Cytotoxicity and Genotoxicity in Rat Alveolar Macrophages. Environmental Research, 2000, 82, 245-252.	3.7	43
218	Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Letters, 2000, 153, 85-93.	3.2	135
219	Critical Role of Reactive Oxygen Species and Mitochondrial Permeability Transition in Microcystin-Induced Rapid Apoptosis in Rat Hepatocytes. Hepatology, 2000, 32, 547-555.	3.6	216
220	Protective Effect of Ebselen on Aflatoxin B1-Induced Cytotoxicity in Primary Rat Hepatocytes. Basic and Clinical Pharmacology and Toxicology, 2000, 86, 156-161.	0.0	17
221	Critical role of GSH in silica-induced oxidative stress, cytotoxicity, and genotoxicity in alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L743-L748.	1.3	25
222	Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochemical Pharmacology, 1999, 57, 273-279.	2.0	96
223	Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepC2 cells. , 1999, 81, 820-828.		161
224	Effect ofSalvia miltiorrhizaon aflatoxin B1-induced oxidative stress in cultured rat hepatocytes. Free Radical Research, 1999, 31, 559-568.	1.5	45
225	Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 442, 69-77.	0.9	109
226	Studies on Oxidative Damage Induced by Cyanobacteria Extract in Primary Cultured Rat Hepatocytes. Environmental Research, 1998, 78, 12-18.	3.7	151
227	Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes Environmental Health Perspectives, 1998, 106, 409-413.	2.8	43
228	Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells) Environmental Health Perspectives, 1997, 105, 712-716.	2.8	117
229	Detection of oxidative dna damage in human sperm and the association with cigarette smoking. Reproductive Toxicology, 1997, 11, 675-680.	1.3	141
230	Does the increase of 8-hydroxydeoxyguanosine lead to poor sperm quality?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 381, 77-82.	0.4	37
231	Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radical Biology and Medicine, 1996, 21, 139-146.	1.3	282
232	Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Mutation Research - Reviews in Genetic Toxicology, 1996, 366, 23-44.	3.0	138
233	Benzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cells. Human and Experimental Toxicology, 1996, 15, 422-427.	1.1	79
234	DNA strand breaks and poly (ADP-ribose) polymerase activation induced by crystalline nickel subsulfide in MRC-5 lung fibroblast cells. Human and Experimental Toxicology, 1996, 15, 891-897.	1.1	14

#	Article	IF	CITATIONS
235	Involvement of reactive oxygen species in aflatoxin B1-induced cell injury in cultured rat hepatocytes. Toxicology, 1995, 99, 115-123.	2.0	119
236	Aflatoxin B1-induced 8-hydroxydeoxyguanosine formation in rat hepatic DNA. Carcinogenesis, 1995, 16, 419-422.	1.3	153
237	Aflatoxin B1-Induced Lipid Peroxidation in Rat Liver. Toxicology and Applied Pharmacology, 1994, 127, 145-150.	1.3	186