
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 215-256.	12.3	10
2	Immobilization of Gold–Aryl Nanoparticles Over Graphene Oxide Platforms: Experimental and Molecular Dynamics Calculations Study. Journal of Cluster Science, 2023, 34, 577-586.	3.3	1
3	Computational insights into binding mechanism of drugs as potential inhibitors against SARS-CoV-2 targets. Chemical Papers, 2022, 76, 111-121.	2.2	5
4	Growth of gold-aryl nanoparticles in lysozyme crystals. Journal of Crystal Growth, 2022, 577, 126402.	1.5	0
5	Mechanochemical synthesis of gold-silver nanocomposites via diazonium salts. Inorganic Chemistry Communication, 2022, 137, 109231.	3.9	0
6	Arylated gold nanostars aided SERS study of breast cancer cells. Applied Surface Science, 2022, 583, 152504.	6.1	12
7	Robust organometallic gold nanoparticles in nanomedicine engineering of proteins. , 2022, , 73-93.		0
8	Potential sensing of cyanide anion using fluorescent lysozyme gold-aryl bioconjugates. Chemical Papers, 2022, 76, 3619-3626.	2.2	3
9	Tryptophan capped gold-aryl nanoparticles for energy transfer study with SARS-CoV-2 spike proteins. Soft Materials, 2022, 20, 405-413.	1.7	4
10	Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Medicinal Chemistry Research, 2022, 31, 1663-1678.	2.4	37
11	FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles. Analytical and Bioanalytical Chemistry, 2021, 413, 1117-1125.	3.7	8
12	Spontaneous redox route for goldâ€aryl film development of latent fingerprints on nickel coins. Surface and Interface Analysis, 2021, 53, 543-549.	1.8	4
13	Organometallic gold nanoparticles and thin films from cis- and trans-tetrazonium gold(III) salts for electrochemical and photothermal mirror properties. Journal of Organometallic Chemistry, 2021, 935, 121681.	1.8	2
14	Exceptionally redox-active precursors in the synthesis of gold core-tin oxide shell nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126266.	4.7	7
15	Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. Journal of Physical Chemistry B, 2021, 125, 7750-7762.	2.6	11
16	Conceptual Developments of Aryldiazonium Salts as Modifiers for Gold Colloids and Surfaces. Langmuir, 2021, 37, 8897-8907.	3.5	17
17	Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations. Research on Chemical Intermediates, 2020, 46, 593-607.	2.7	1
18	On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study. Materials Today Chemistry, 2020, 16, 100237.	3.5	41

#	Article	IF	CITATIONS
19	Development of Latent Fingerprints via Aryldiazonium Tetrachloroaurate Salts on Copper Surfaces: An XPS Study. Langmuir, 2020, 36, 74-83.	3.5	19
20	Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124279.	4.7	12
21	Physicochemical stability study of protein–benzoic acid complexes using molecular dynamics simulations. Amino Acids, 2020, 52, 1353-1362.	2.7	13
22	Polyaniline coated gold-aryl nanoparticles: Electrochemical synthesis and efficiency in methylene blue dye removal. Synthetic Metals, 2020, 269, 116528.	3.9	23
23	Protein-Coated Aryl Modified Gold Nanoparticles for Cellular Uptake Study by Osteosarcoma Cancer Cells. Langmuir, 2020, 36, 11765-11775.	3.5	26
24	Diazonium Gold Salts as Novel Surface Modifiers: What Have We Learned So Far?. Surfaces, 2020, 3, 182-196.	2.3	7
25	Efficient synthesis of amino acids capped gold nanoparticles from easily reducible aryldiazonium tetrachloroaurate(III) salts for cellular uptake study. Amino Acids, 2020, 52, 941-953.	2.7	14
26	Goldâ€Aryl nanoparticles coated with polyelectrolytes for adsorption and protection of DNA against nuclease degradation. Applied Organometallic Chemistry, 2019, 33, e4803.	3.5	14
27	Evaluation of diazonium gold(III) salts in forensic chemistry: Latent fingerprint development on metal surfaces. Forensic Chemistry, 2019, 13, 100144.	2.8	12
28	Green and cytocompatible carboxyl modified gold–lysozyme nanoantibacterial for combating multidrug-resistant superbugs. Biomaterials Science, 2019, 7, 5016-5026.	5.4	23
29	Synthesis of water-soluble gold–aryl nanoparticles with distinct catalytic performance in the reduction of the environmental pollutant 4-nitrophenol. Catalysis Science and Technology, 2019, 9, 6059-6071.	4.1	29
30	Gold-carbon nanoparticles mediated delivery of BSA: Remarkable robustness and hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 351-358.	4.7	25
31	Synthesis of gold organometallics at the nanoscale. Journal of Organometallic Chemistry, 2018, 877, 1-11.	1.8	21
32	Emerging clay-aryl-gold nanohybrids for efficient electrocatalytic proton reduction. Energy Conversion and Management, 2018, 168, 170-177.	9.2	19
33	Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles. Nanoscale, 2017, 9, 3128-3132.	5.6	19
34	Femtosecond Laser Ablation Synthesis of Aryl Functional Group Substituted Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 2852-2856.	0.9	11
35	Forensic Nanotechnology: Engineering Polyaniline Nanocomposites for Latent Fingerprints Development. Journal of Nanoscience and Nanotechnology, 2017, 17, 2865-2872.	0.9	7
36	Modification of Nanodiamonds with Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 4063-4068.	0.9	2

#	Article	IF	CITATIONS
37	Diazonium interface chemistry and click polymerization: A novel route for carbon nanotubeâ€polytriazole nanocomposites. Surface and Interface Analysis, 2016, 48, 509-513.	1.8	19
38	Gilded Hope for Medicine. Inorganics, 2015, 3, 139-154.	2.7	4
39	Frontiers in Gold Chemistry. Inorganics, 2015, 3, 370-373.	2.7	1
40	Functionalization of nanomaterials with aryldiazonium salts. Advances in Colloid and Interface Science, 2015, 225, 16-36.	14.7	139
41	Gold-organic thin films from the reductive grafting of diazonium gold(III) salts. Journal of Electroanalytical Chemistry, 2015, 757, 73-79.	3.8	7
42	Robust Organometallic Gold Nanoparticles. Organometallics, 2014, 33, 439-442.	2.3	44
43	Synthesis of Diazonium Tetrachloroaurate(III) Precursors for Surface Grafting. Inorganics, 2013, 1, 70-84.	2.7	14
44	Gold(III) Diazonium Complexes for Electrochemical Reductive Grafting. Inorganic Chemistry, 2012, 51, 5500-5502.	4.0	21
45	Oxidative Rearrangement in Gold Organometallics. Organometallics, 2012, 31, 3460-3462.	2.3	6
46	Fine-Tuning the Luminescence and HOMO–LUMO Energy Levels in Tetranuclear Gold(I) Fluorinated Amidinate Complexes. Inorganic Chemistry, 2012, 51, 2010-2015.	4.0	17
47	Bioinspired Ion Recognition in Hexanuclear Copper Pyrazolate Metallacycles. European Journal of Inorganic Chemistry, 2012, 2012, 3257-3261.	2.0	11
48	Halide and Nitrite Recognizing Hexanuclear Metallacycle Copper(II) Pyrazolates. Inorganic Chemistry, 2011, 50, 1014-1020.	4.0	42
49	Gold is going forensic. Gold Bulletin, 2011, 44, 71-77.	2.4	24
50	Coordination chemistry of gold(II) with amidinate, thiolate and ylide ligands. Coordination Chemistry Reviews, 2010, 254, 1253-1259.	18.8	60
51	Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals. Coordination Chemistry Reviews, 2010, 254, 1918-1947.	18.8	154
52	Mono and Tetranuclear Gold(I) Complexes of Tris(1-benzylimidazole-2-yl)phosphine. Inorganic Chemistry, 2010, 49, 513-518.	4.0	14
53	Structures and properties of gold(I) complexes of interest in biochemical applications. Coordination Chemistry Reviews, 2009, 253, 1661-1669.	18.8	62
54	An Octanuclear Gold(I) Cube with Amidinate Ligands Containing Two Hyper-coordinate Ylide Carbon Atoms. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1487-1490.	0.7	10

#	Article	IF	CITATIONS
55	A Silver(I)–Gold(II) Hexanuclear Guanidinate–Benzoate Cluster with Short Au–Au Bonds. Journal of Cluster Science, 2008, 19, 551-559.	3.3	15
56	The hexagonal to discotic phase transition in 1,4,8,11,15,18,22,25â€octahexylphthalocyanine studied by differential scanning calorimetry. Liquid Crystals, 2008, 35, 351-356.	2.2	2
57	Structural and optical properties of 1, 4, 8, 11, 15, 18, 22, 25-octahexylphthalocyanine: A comparison between thermally evaporated and spin-coated thin films. Journal of Taibah University for Science, 2008, 1, 35-42.	2.5	3
58	Vapochromic Behavior of {Ag ₂ (Et ₂ O) ₂ [Au(C ₆ F ₅) ₂] _{2< with Volatile Organic Compounds. Inorganic Chemistry, 2008, 47, 8069-8076.}	/ sub >} <su< td=""><td>lbuxtoi>n</td></su<>	lbuxtoi>n
59	Synthesis, Characterization, Luminescence, and Electrochemistry of the Tetranuclear Gold(I) Amidinate Clusters, Precursors to CO Oxidation Catalysts: Au4[(ArNC(H)NAr)]4, 1107-1113.	1.4	10
60	Self-assembly of a High-Nuclearity Chloride-Centered Copper(II) Cluster. Structure and Magnetic Properties of [Au(PPh3)2][trans-Cu6(μ-OH)6{μ-(3,5-CF3)2pz}6Cl]. Inorganic Chemistry, 2007, 46, 2348-2349.	4.0	46
61	Oxidative Addition of Small Molecules to a Dinuclear Au(I) Amidinate Complex, Au2[(2,6-Me2Ph)2N2CH]2. Syntheses and Characterization of Au(II) Amidinate Complexes Including One Which Possesses Au(II)â~Oxygen Bonds. Inorganic Chemistry, 2007, 46, 9692-9699.	4.0	40
62	Dinuclear and Tetranuclear Goldâ^'Nitrogen Complexes. Solvent Influences on Oxidation and Nuclearity of Gold Guanidinate Derivatives. Inorganic Chemistry, 2007, 46, 11165-11172.	4.0	38
63	Syntheses of Mixed-Ligand Tetranuclear Gold(I)â^'Nitrogen Clusters by Ligand Exchange Reactions with the Dinuclear Gold(I) Formamidinate Complex Au2(2,6-Me2Ph-form)2. Inorganic Chemistry, 2007, 46, 141-146.	4.0	26
64	Synthesis, Characterization, Luminescence, and Electrochemistry of New Tetranuclear Gold(I) Amidinate Clusters: Au4[PhNC(Ph)NPh]4, Au4[PhNC(CH3)NPh]4, and Au4[ArNC(H)NAr]4. Journal of Cluster Science, 2007, 18, 630-641.	3.3	23
65	Gold(I) and Silver(I) Mixed-Metal Trinuclear Complexes:  Dimeric Products from the Reaction of Gold(I) Carbeniates or Benzylimidazolates with Silver(I) 3,5-Diphenylpyrazolate. Inorganic Chemistry, 2006, 45, 7770-7776.	4.0	48
66	Mercury(II) Cyanide Coordination Polymer with Dinuclear Gold(I) Amidinate. Structure of the 2-D [Au2(2,6-Me2-formamidinate)2]·2Hg(CN)2·2THF Complex. Inorganic Chemistry, 2006, 45, 11-13.	4.0	29
67	CO oxidation over Au/TiO2 prepared from metal-organic gold complexes. Catalysis Letters, 2006, 111, 15-18.	2.6	42
68	Unsupported intermolecular argentophilic interaction in the dimer of trinuclear silver(I) 3,5-diphenylpyrazolates. Inorganica Chimica Acta, 2005, 358, 1657-1662.	2.4	83
69	Photophysics of supramolecular binary stacks consisting of electron-rich trinuclear Au(I) complexes and organic electrophiles. Coordination Chemistry Reviews, 2005, 249, 1372-1381.	18.8	111
70	Cyclic Trinuclear Gold(I) Compounds: Synthesis, Structures and Supramolecular Acid?Base ?-Stacks. ChemInform, 2005, 36, no.	0.0	0
71	External heavy-atom effect of gold in a supramolecular acid–base π stack. Dalton Transactions, 2005, , 2597.	3.3	60
72	Novel metallamacrocyclic gold(i) thiolate cluster complex: structure and luminescence of [Au9(μ-dppm)4(μ-p-tc)6](PF6)3. Chemical Communications, 2005, , 1575-1577.	4.1	49

#	Article	IF	CITATIONS
73	Synthesis and X-ray Structures of Dinuclear and Trinuclear Gold(I) and Dinuclear Gold(II) Amidinate Complexesâ€. Inorganic Chemistry, 2005, 44, 166-168.	4.0	52
74	The Role of F-Centers in Catalysis by Au Supported on MgO. Journal of the American Chemical Society, 2005, 127, 1604-1605.	13.7	173
75	Mixed-Metal Triangular Trinuclear Complexes:  Dimers of Goldâ ``Silver Mixed-Metal Complexes from Gold(I) Carbeniates and Silver(I) 3,5-Diphenylpyrazolates. Journal of the American Chemical Society, 2005, 127, 5012-5013.	13.7	67
76	Oxidative Addition of Methyl Iodide to Dinuclear Gold(I) Amidinate Complex: Schmidbaur's Breakthrough Reaction Revisited with Amidinates. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 1480-1482.	0.7	17
77	Tetranuclear Gold(I) Clusters with Nitrogen Donor Ligands: Luminescence and X-Ray Structure of Gold(I) Naphthyl Amidinate Complex. Journal of Cluster Science, 2004, 15, 397-411.	3.3	28
78	Structures and luminescence of mononuclear and dinuclear base-stabilized gold(I) pyrazolate complexes. Inorganica Chimica Acta, 2004, 357, 1761-1766.	2.4	18
79	Cluster self-assembly of centered cubes of copper(I) with dialkyldithiophosphate ligands. X-ray structures of [Cu8(DDP)6(μ48-X)]PF6 (DDP=S2P(OiPr)2; X=Cl or Br) and their relationship to oxide and sulfide centered zinc(II) dialkyldithiophosphates, [Zn4(DDP)6(μ4-S or O)]. Inorganica Chimica Acta, 2004, 357. 3950-3956.	2.4	35
80	A Detailed Study of the Vapochromic Behavior of {Tl[Au(C6Cl5)2]}n. Inorganic Chemistry, 2004, 43, 3573-3581.	4.0	104
81	Synthesis, Characterization, and Luminescent Properties of Dinuclear Gold(I) Xanthate Complexes:Â X-ray Structure of [Au2(nBu-xanthate)2]. Inorganic Chemistry, 2004, 43, 3833-3839.	4.0	45
82	Gold(I) Formamidinate Clusters: The Structure, Luminescence, and Electrochemistry of the Tetranuclear, Base-Free [Au4(ArNC(H)NAr)4]. Journal of Cluster Science, 2003, 14, 253-266.	3.3	33
83	Title is missing!. Journal of Cluster Science, 2003, 14, 61-70.	3.3	31
84	Three-coordinate, luminescent, water-soluble gold(I) phosphine complexes: structural characterization and photoluminescence properties in aqueous solution. Inorganica Chimica Acta, 2003, 352, 31-45.	2.4	45
85	[μ-o-Phenylenebis(diphenylphosphine)-κ2P:Pâ€2]bis[chlorogold(I)], dppbz(AuCl)2. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m84-m86.	0.4	18
86	Syntheses and Structures of Dinuclear Gold(I) Dithiophosphonate Complexes and the Reaction of the Dithiophosphonate Complexes with Phosphines:  Diverse Coordination Types. Inorganic Chemistry, 2003, 42, 5311-5319.	4.0	52
87	CYCLIC TRINUCLEAR GOLD(I) COMPOUNDS: SYNTHESIS, STRUCTURES AND SUPRAMOLECULAR ACID-BASE Ĩ€-STACKS. Comments on Inorganic Chemistry, 2003, 24, 253-280.	5.2	107
88	{Tl[Au(C6Cl5)2]}n:Â A Vapochromic Complex. Journal of the American Chemical Society, 2003, 125, 2022-2023.	13.7	207
89	Formation of a Cationic Gold(I) Complex and Disulfide by Oxidation of the Antiarthritic Gold Drug Auranofin. Inorganic Chemistry, 2003, 42, 2203-2205.	4.0	43
90	Synthesis and X-ray structures of silver and gold guanidinate-like complexes. A Au(ii) complex with a 2.47 Å Au–Au distance. Chemical Communications, 2003, , 2882-2883.	4.1	60

#	Article	IF	CITATIONS
91	Perspectives in Inorganic and Bioinorganic Gold Sulfur Chemistry. Comments on Inorganic Chemistry, 2002, 23, 321-334.	5.2	24
92	Syntheses, Structure, and Photoluminescence Properties of the 1-Dimensional Chain Compounds [(TPA)2Au][Au(CN)2] and (TPA)AuCl (TPA = 1,3,5-Triaza-7-phosphaadamantane). Inorganic Chemistry, 2002, 41, 6274-6280.	4.0	135
93	Dinuclear Gold(I) Dithiophosphonate Complexes:  Synthesis, Luminescent Properties, and X-ray Crystal Structures of [AuS2PR(ORâ€~)]2 (R = Ph, Râ€~ = C5H9; R = 4-C6H4OMe, Râ€~ = (1S,5R,2S)-(â^*)-Menthyl; R = Fc,	Râ€õ=) Tj	ЕТ 1@5 110.7
94	Bis(3,5-dimethylpyrazole-κN2)silver(I) nitrate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m228-m229.	0.4	11
95	Cyclic Voltammetry of Auranofin. Metal-Based Drugs, 1999, 6, 233-238.	3.8	18
96	Electrochemical and Chemical Oxidation of Gold(I) Thiolate Phosphine Complexes:Â Formation of Gold Clusters and Disulfide. Journal of the American Chemical Society, 1999, 121, 9225-9226.	13.7	40
97	Solvent extraction studies on tetravalent selenium. Journal of Radioanalytical and Nuclear Chemistry, 1993, 171, 401-406.	1.5	2
98	The Electrochemistry of Gold and Silver Complexes. , 0, , 313-352.		5
99	Aryldiazonium gold salts as efficient oxidants for polymerization of anilines. Research on Chemical Intermediates, 0, , 1.	2.7	0
100	Graphitic Carbon Nitride Platforms Modified with Gold-Aryl Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Comments on Inorganic Chemistry, 0, , 1-22.	5.2	1