Bruce Fegley Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11340946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Models of the Deep Atmospheres of Jupiter and Saturn. Icarus, 1994, 110, 117-154.	2.5	256
2	Constraints on Stellar Grain Formation from Presolar Graphite in the Murchison Meteorite. Astrophysical Journal, 1996, 472, 760-782.	4.5	254
3	Earth's Earliest Atmospheres. Cold Spring Harbor Perspectives in Biology, 2010, 2, a004895-a004895.	5.5	216
4	A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth and Planetary Science Letters, 1987, 82, 207-222.	4.4	207
5	Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters, 1987, 83, 1-15.	4.4	194
6	Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth and Planetary Science Letters, 1985, 72, 311-326.	4.4	193
7	ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON. Astrophysical Journal, 2010, 716, 1060-1075.	4.5	178
8	CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS. Astrophysical Journal, 2009, 703, L113-L117.	4.5	166
9	Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus, 2010, 208, 438-448.	2.5	155
10	Chemical effects of large impacts on the Earth's primitive atmosphere. Nature, 1986, 319, 305-308.	27.8	150
11	High-temperature condensation of iron-rich olivine in the solar nebula. Earth and Planetary Science Letters, 1990, 101, 180-195.	4.4	138
12	THE ATMOSPHERES OF EARTHLIKE PLANETS AFTER GIANT IMPACT EVENTS. Astrophysical Journal, 2014, 784, 27.	4.5	132
13	A thermodynamic model of high temperature lava vaporization on Io. Icarus, 2004, 169, 216-241.	2.5	122
14	VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES. Astrophysical Journal, 2012, 755, 41.	4.5	121
15	Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus, 2007, 186, 462-483.	2.5	115
16	Volatile element chemistry in the solar nebula: Na, K, F, Cl, Br, and P. Icarus, 1980, 41, 439-455.	2.5	110
17	Kinetics of gas-Grain Reactions in the Solar Nebula. Space Science Reviews, 2000, 92, 177-200.	8.1	100
18	CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS. Astrophysical Journal Letters, 2013, 767, L12.	8.3	96

Bruce Fegley Jr

#	Article	IF	CITATIONS
19	The Oxidation State of the Lower Atmosphere and Surface of Venus. Icarus, 1997, 125, 416-439.	2.5	94
20	Lanthanide and actinide chemistry at highCO/ ratios in the solar nebula. Earth and Planetary Science Letters, 1993, 117, 125-145.	4.4	86
21	Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nature Geoscience, 2015, 8, 918-921.	12.9	84
22	The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions: implications for chemical and physical processes in the solar nebula. Earth and Planetary Science Letters, 1986, 79, 217-234.	4.4	81
23	Chemistry of Sodium, Potassium, and Chlorine in Volcanic Gases on Io. Icarus, 2000, 148, 193-210.	2.5	65
24	The Solar System's Earliest Chemistry: Systematics of Refractory Inclusions. International Geology Review, 2000, 42, 865-894.	2.1	62
25	Volcanic Production of Sulfur Monoxide (SO) on Io. Icarus, 1998, 132, 431-434.	2.5	59
26	Heavy metal frost on Venus. Icarus, 2004, 168, 215-219.	2.5	57
27	Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals. Astrophysical Journal, 2017, 843, 120.	4.5	51
28	ATMOSPHERIC CHEMISTRY OF VENUS-LIKE EXOPLANETS. Astrophysical Journal, 2011, 729, 6.	4.5	50
29	Sulfur chemistry in the wake of comet Shoemaker-Levy 9. Geophysical Research Letters, 1995, 22, 1593-1596.	4.0	49
30	Condensation chemistry of carbon stars. , 1997, , .		45
31	Potassium isotopic compositions of howardite-eucrite-diogenite meteorites. Geochimica Et Cosmochimica Acta, 2019, 266, 611-632.	3.9	45
32	Thermodynamics of Element Volatility and its Application to Planetary Processes. Reviews in Mineralogy and Geochemistry, 2018, 84, 393-459.	4.8	44
33	SOLUBILITY OF ROCK IN STEAM ATMOSPHERES OF PLANETS. Astrophysical Journal, 2016, 824, 103.	4.5	42
34	Tin isotopes indicative of liquid–vapour equilibration and separation in the Moon-forming disk. Nature Geoscience, 2019, 12, 707-711.	12.9	39
35	Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars. Space Science Reviews, 2020, 216, 1.	8.1	34
36	Condensation Chemistry of Circumstellar Grains. Symposium - International Astronomical Union, 1999, 191, 279-290.	0.1	33

Bruce Fegley Jr

#	Article	IF	CITATIONS
37	Chemistry of the Solar Nebula. , 1993, , 75-147.		29
38	The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites. Earth and Planetary Science Letters, 1984, 68, 181-197.	4.4	28
39	Thermodynamic models of the chemistry of lunar volcanic gases. Geophysical Research Letters, 1991, 18, 2073-2076.	4.0	28
40	Volcanic Origin of Disulfur Monoxide (S2O) on Io. Icarus, 1998, 133, 293-297.	2.5	28
41	Implications of K, Cu and Zn isotopes for the formation of tektites. Geochimica Et Cosmochimica Acta, 2019, 259, 170-187.	3.9	27
42	A refractory inclusion in the Kaba CV3 chondrite: some implications for the origin of spinel-rich objects in chondrites. Earth and Planetary Science Letters, 1985, 75, 297-310.	4.4	21
43	Volatile element chemistry during accretion of the earth. Chemie Der Erde, 2020, 80, 125594.	2.0	20
44	Complementary Trace Element Abundances in Meteoritic S[CLC]i[/CLC]C Grains and Carbon Star Atmospheres. Astrophysical Journal, 1997, 484, L71-L74.	4.5	19
45	Application of an equilibrium vaporization model to the ablation of chondritic and achondritic meteoroids. Earth, Moon and Planets, 2004, 95, 413-423.	0.6	17
46	Injection of meteoric phosphorus into planetary atmospheres. Planetary and Space Science, 2020, 187, 104926.	1.7	17
47	Kinetics of Gas-Grain Reactions in the Solar Nebula. Space Sciences Series of ISSI, 2000, , 177-200.	0.0	16
48	The sulfur vapor pressure over pyrite on the surface of Venus. Planetary and Space Science, 1998, 46, 683-690.	1.7	15
49	Experimental partitioning of Zr, Nb, and Ti between platinum group metals and silicate liquid: implications for the origin of refractory metal nuggets in carbonaceous chondrites. Earth and Planetary Science Letters, 1995, 132, 183-198.	4.4	7
50	Cosmochemistry. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 347-377.	0.3	7
51	High temperature evaporation and isotopic fractionation of K and Cu. Geochimica Et Cosmochimica Acta, 2022, 316, 1-20.	3.9	7
52	Solubility of CO2 in Sodium Silicate Melts. ACS Earth and Space Chemistry, 2020, 4, 2113-2120.	2.7	1
53	Chemistry and Composition of Planetary Atmospheres. ACS Symposium Series, 2008, , 187-207.	0.5	0