Edward Darzynkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11334443/publications.pdf

Version: 2024-02-01

66343 76900 6,455 156 42 74 citations h-index g-index papers 164 164 164 4117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Research, 2021, 49, 6722-6738.	14.5	29
2	Insight into the Binding and Hydrolytic Preferences of hNudt16 Based on Nucleotide Diphosphate Substrates. International Journal of Molecular Sciences, 2021, 22, 10929.	4.1	6
3	Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. Rna, 2020, 26, 58-68.	3. 5	11
4	Effect of the His-Tag Location on Decapping Scavenger Enzymes and Their Hydrolytic Activity toward Cap Analogs. ACS Omega, 2020, 5, 10759-10766.	3.5	5
5	Development of bis-ANS-based modified fluorescence titration assay for IFIT/RNA studies. Biochemical and Biophysical Research Communications, 2020, 533, 391-396.	2.1	2
6	CAP-MAP: cap analysis protocol with minimal analyte processing, a rapid and sensitive approach to analysing mRNA cap structures. Open Biology, 2020, 10, 190306.	3.6	36
7	Decapping Scavenger Enzyme Activity toward N2-Substituted 5′ End mRNA Cap Analogues. ACS Omega, 2019, 4, 17576-17580.	3. 5	2
8	Hydrolytic activity of human Nudt16 enzyme on dinucleotide cap analogs and short capped oligonucleotides. Rna, 2018, 24, 633-642.	3.5	16
9	Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Cell Cycle, 2018, 17, 1624-1636.	2.6	39
10	Amino-Functionalized 5′ Cap Analogs as Tools for Site-Specific Sequence-Independent Labeling of mRNA. Bioconjugate Chemistry, 2017, 28, 1978-1992.	3.6	18
11	mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Research, 2017, 45, 8661-8675.	14.5	23
12	Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Research, 2016, 44, gkw896.	14.5	52
13	Molecular recognition of mRNA $5\hat{a}\in^2$ cap by $3\hat{a}\in^2$ poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 331-345.	2.3	4
14	Clickable trimethylguanosine cap analogs modified within the triphosphate bridge: synthesis, conjugation to RNA and susceptibility to degradation. RSC Advances, 2016, 6, 8317-8328.	3.6	9
15	How to find the optimal partnerâ \in "studies of snurportin 1 interactions with U snRNA 5â \in 2 TMG-cap analogues containing modified 2-amino group of 7-methylguanosine. Bioorganic and Medicinal Chemistry, 2015, 23, 4660-4668.	3.0	8
16	Effect of different N7 substitution of dinucleotide cap analogs on the hydrolytic susceptibility towards scavenger decapping enzymes (DcpS). Biochemical and Biophysical Research Communications, 2015, 464, 89-93.	2.1	6
17	Phosphate-modified analogues of m 7 GTP and m 7 Gppppm 7 Gâ€"Synthesis and biochemical properties. Bioorganic and Medicinal Chemistry, 2015, 23, 5369-5381.	3.0	21
18	Distinct Features of Cap Binding by eIF4E1b Proteins. Journal of Molecular Biology, 2015, 427, 387-405.	4.2	23

#	Article	IF	CITATIONS
19	Five eIF4E isoforms from Arabidopsis thaliana are characterized by distinct features of cap analogs binding. Biochemical and Biophysical Research Communications, 2015, 456, 47-52.	2.1	25
20	Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Research, 2014, 42, 10245-10264.	14.5	49
21	Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nature Communications, 2014, 5, 3004.	12.8	79
22	Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5′,5′-triphosphate bridge. Organic and Biomolecular Chemistry, 2014, 12, 9184-9199.	2.8	11
23	Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. Rna, 2014, 20, 1539-1547.	3.5	17
24	eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in <i>Trypanosoma brucei</i> . Rna, 2014, 20, 1272-1286.	3.5	48
25	Trypanosoma brucei Translation Initiation Factor Homolog EIF4E6 Forms a Tripartite Cytosolic Complex with EIF4G5 and a Capping Enzyme Homolog. Eukaryotic Cell, 2014, 13, 896-908.	3.4	41
26	Cap analogs containing 6-thioguanosine – reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Organic and Biomolecular Chemistry, 2014, 12, 4841-4847.	2.8	17
27	mRNA and snRNA Cap Analogs: Synthesis and Applications. , 2014, , 511-561.		1
28	Synthesis and evaluation of fluorescent cap analogues for mRNA labelling. RSC Advances, $2013, 3, 20943$.	3.6	24
29	Analysis of decapping scavenger cap complex using modified cap analogs reveals molecular determinants for efficient cap binding. FEBS Journal, 2013, 280, 6508-6527.	4.7	15
30	mRNAs containing the histone $3\hat{a}\in^2$ stem $\hat{a}\in^2$ loop are degraded primarily by decapping mediated by oligouridylation of the $3\hat{a}\in^2$ end. Rna, 2013, 19, 1-16.	3.5	46
31	The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3753-3758.	2.2	25
32	Synthesis and evaluation of stability of m3G-CAP analogues in serum-supplemented medium and cytosolic extract. Bioorganic and Medicinal Chemistry, 2013, 21, 7921-7928.	3.0	10
33	Synthetic mRNAs with Superior Translation and Stability Properties. Methods in Molecular Biology, 2013, 969, 55-72.	0.9	44
34	Investigating the Consequences of eIF4E2 (4EHP) Interaction with 4E-Transporter on Its Cellular Distribution in HeLa Cells. PLoS ONE, 2013, 8, e72761.	2.5	23
35	Affinity resins containing enzymatically resistant mRNA cap analogs—a new tool for the analysis of cap-binding proteins. Rna, 2012, 18, 1421-1432.	3.5	12
36	Synthesis of biotin labelled cap analogue $\hat{a} \in \text{``incorporable into mRNA transcripts and promoting cap-dependent translation. Organic and Biomolecular Chemistry, 2012, 10, 8570.}$	2.8	22

#	Article	IF	CITATIONS
37	7-Methylguanosine Diphosphate (m ⁷ GDP) Is Not Hydrolyzed but Strongly Bound by Decapping Scavenger (DcpS) Enzymes and Potently Inhibits Their Activity. Biochemistry, 2012, 51, 8003-8013.	2.5	32
38	Synthesis and properties of mRNA cap analogs containing imidodiphosphate moietyâ€"fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorganic and Medicinal Chemistry, 2012, 20, 1699-1710.	3.0	52
39	Thermodynamics of Molecular Recognition of mRNA 5′ Cap by Yeast Eukaryotic Initiation Factor 4E. Journal of Physical Chemistry B, 2011, 115, 8746-8754.	2.6	8
40	Structural analysis of 5′â€mRNA–cap interactions with the human AGO2 MID domain. EMBO Reports, 2011, 12, 415-420.	4.5	35
41	Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH ₃ , Se, and NH. Rna, 2011, 17, 978-988.	3.5	32
42	Structural basis for nematode eIF4E binding an m 2,2,7 G-Cap and its implications for translation initiation. Nucleic Acids Research, 2011, 39, 8820-8832.	14.5	38
43	Structural requirements for <i>Caenorhabditisâ€∫elegans</i> DcpS substrates based on fluorescence and HPLC enzyme kinetic studies. FEBS Journal, 2010, 277, 3003-3013.	4.7	14
44	Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Research, 2010, 38, e114-e114.	14.5	10
45	Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities. Rna, 2010, 16, 211-220.	3.5	19
46	The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a <i>trans</i> -Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs. Molecular and Cellular Biology, 2010, 30, 1958-1970.	2.3	30
47	Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*. Journal of Biological Chemistry, 2010, 285, 33037-33044.	3.4	136
48	Synthetic mRNA cap analogs with a modified triphosphate bridge $\hat{a} \in \text{``synthesis'}$, applications and prospects. New Journal of Chemistry, 2010, 34, 829.	2.8	71
49	Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New Journal of Chemistry, 2010, 34, 993.	2.8	35
50	Recognition of different nucleotidyl-derivatives as substrates of reactions catalyzed by various HIT-proteins. New Journal of Chemistry, 2010, 34, 888.	2.8	32
51	Structural Insights into Parasite elF4E Binding Specificity for m7G and m2,2,7G mRNA Caps. Journal of Biological Chemistry, 2009, 284, 31336-31349.	3.4	30
52	Identification of the HIT-45 protein from <i>Trypanosoma brucei</i> as an FHIT protein/dinucleoside triphosphatase: Substrate specificity studies on the recombinant and endogenous proteins. Rna, 2009, 15, 1554-1564.	3.5	14
53	Evolutionary changes in the Leishmania elF4F complex involve variations in the elF4E–elF4G interactions. Nucleic Acids Research, 2009, 37, 3243-3253.	14.5	65
54	Phosphoroselenoate Dinucleotides for Modification of mRNA 5′ End. ChemBioChem, 2009, 10, 2469-2473.	2.6	23

#	Article	IF	CITATIONS
55	Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1921-1925.	2.2	35
56	Diverse Role of Three Tyrosines in Binding of the RNA 5′ Cap to the Human Nuclear Cap Binding Complex. Journal of Molecular Biology, 2009, 385, 618-627.	4.2	19
57	Drosophila miR2 Primarily Targets the m7GpppN Cap Structure for Translational Repression. Molecular Cell, 2009, 35, 881-888.	9.7	74
58	Synthetic dinucleotide mRNA cap analogs with tetraphosphate $5\hat{a}\in ^2$, $5\hat{a}\in ^2$ bridge containing methylenebis(phosphonate) modification. Organic and Biomolecular Chemistry, 2009, 7, 4763.	2.8	50
59	Decapping of mRNA containing the histone 3′â€stem loop requires recruitment of stem loop binding protein (SLBP). FASEB Journal, 2009, 23, .	0.5	0
60	mRNA Decapping Is Promoted by an RNA-Binding Channel in Dcp2. Molecular Cell, 2008, 29, 324-336.	9.7	99
61	Structural Changes of eIF4E upon Binding to the mRNA 5′ Monomethylguanosine and Trimethylguanosine Cap. Biochemistry, 2008, 47, 2710-2720.	2.5	28
62	Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. Rna, 2008, 14, 1119-1131.	3.5	108
63	Bisphosphonate mRNA cap analog attached to Sepharose for affinity chromatography of decapping enzymes. Nucleic Acids Symposium Series, 2008, 52, 295-296.	0.3	2
64	The TbMTr1 Spliced Leader RNA Cap 1 2 $\hat{a} \in ^2$ -O-Ribose Methyltransferase from Trypanosoma brucei Acts with Substrate Specificity. Journal of Biological Chemistry, 2008, 283, 3161-3172.	3.4	20
65	Affinity of Dinucleotide Cap Analogues for Human Decapping Scavenger (hDcpS). Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1349-1352.	1.1	9
66	Assignment of the Absolute Configuration of P-Chiral 5â€2Mrna Cap Analogues Containing Phosphorothioate Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1301-1305.	1.1	1
67	Synthesis of ^{3} H and ^{13} C Labeled Mrna Cap Dinucleotidesâ€"Useful Tools for Nmr, Biochemical, and Biological Studies. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1315-1319.	1.1	3
68	Solid-Supported Synthesis of $5\hat{a}\in^2$ -mRNA CAP-4 from Trypanosomatids. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1329-1333.	1.1	4
69	Weak binding affinity of human 4EHP for mRNA cap analogs. Rna, 2007, 13, 691-697.	3.5	66
70	Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. Rna, 2007, 13, 1745-1755.	3.5	126
71	Synthesis of <i>Leishmania < /i></i> Cap-4 Intermediates, Cap-2 and Cap-3. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1339-1348.	1.1	2
72	Biophysical Approach to Studies of Cap–elF4E Interaction by Synthetic Cap Analogs. Methods in Enzymology, 2007, 430, 209-245.	1.0	33

#	Article	lF	CITATIONS
73	Interaction of human decapping scavenger with $5\hat{a}\in^2$ mRNA cap analogues: structural requirements for catalytic activity. Journal of Physics Condensed Matter, 2007, 19, 285217.	1.8	8
74	Synthesis of Antiâ€Reverse Cap Analogs (ARCAs) and their Applications in mRNA Translation and Stability. Methods in Enzymology, 2007, 431, 203-227.	1.0	79
75	A simple and rapid synthesis of nucleotide analogues containing a phosphorothioate moiety at the terminal position of the phosphate chain. Tetrahedron Letters, 2007, 48, 5475-5479.	1.4	34
76	In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Molecular and Biochemical Parasitology, 2007, 153, 95-106.	1.1	17
77	MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F. Science, 2007, 317, 1764-1767.	12.6	458
78	Differential Inhibition of mRNA Degradation Pathways by Novel Cap Analogs. Journal of Biological Chemistry, 2006, 281, 1857-1867.	3.4	73
79	Methylene analogues of adenosine 5'-tetraphosphate. Their chemical synthesis and recognition by human and plant mononucleoside tetraphosphatases and dinucleoside tetraphosphatases. FEBS Journal, 2006, 273, 829-838.	4.7	9
80	Enzymatically stable 5′ mRNA cap analogs: Synthesis and binding studies with human DcpS decapping enzyme. Bioorganic and Medicinal Chemistry, 2006, 14, 3223-3230.	3.0	51
81	Binding Specificities and Potential Roles of Isoforms of Eukaryotic Initiation Factor 4E in Leishmania. Eukaryotic Cell, 2006, 5, 1969-1979.	3.4	77
82	Trimethylguanosine Nucleoside Inhibits Cross-Linking Between Snurportin 1 and m3G-CAPPED U1 snRNA. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 909-923.	1.1	2
83	Stopped-flow Kinetic Analysis of eIF4E and Phosphorylated eIF4E Binding to Cap Analogs and Capped Oligoribonucleotides. Journal of Biological Chemistry, 2006, 281, 14927-14938.	3.4	71
84	Kinetics of the Imidazolium Ring-Opening of mRNA 5'-cap Analogs in Aqueous Alkali. Collection of Czechoslovak Chemical Communications, 2006, 71, 567-578.	1.0	3
85	A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides. Tetrahedron Letters, 2005, 46, 2417-2421.	1.4	38
86	Significance of the first transcribed nucleoside of capped RNA for ligand-induced folding of the cap-binding complex. Journal of Physics Condensed Matter, 2005, 17, S1495-S1502.	1.8	0
87	The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro. Rna, 2005, 11, 1505-1513.	3.5	37
88	Thermodynamics and conformational changes related to binding of eIF4E protein to mRNA 5′ cap. Journal of Physics Condensed Matter, 2005, 17, S1483-S1494.	1.8	6
89	DEAGGREGATION OF eIF4E INDUCED BY mRNA 5′ CAP BINDING. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 507-511.	1.1	4
90	A NOVEL APPROACH TO SOLID PHASE CHEMICAL SYNTHESIS OF OLIGONUCLEOTIDE mRNA CAP ANALOGS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 601-605.	1.1	16

#	Article	IF	Citations
91	NOVEL WAY OF CAPPING mRNA TRIMER AND STUDIES OF ITS INTERACTION WITH HUMAN NUCLEAR CAP-BINDING COMPLEX. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1131-1134.	1.1	2
92	NOVEL DINUCLEOSIDE $5\hat{a}\in^2$, $5\hat{a}\in^2$ -TRIPHOSPHATE CAP ANALOGUES. SYNTHESIS AND AFFINITY FOR MURINE TRANSLATION FACTOR eIF4E. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 629-633.	1.1	6
93	SYNTHESIS AND PROPERTIES OF mRNA CAP ANALOGS CONTAINING PHOSPHOROTHIOATE MOIETY IN 5′,5′-TRIPHOSPHATE CHAIN. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 595-600.	1.1	10
94	SYNTHESIS AND BIOCHEMICAL PROPERTIES OF NOVEL mRNA 5′ CAP ANALOGS RESISTANT TO ENZYMATIC HYDROLYSIS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 615-621.	1.1	28
95	Specificity of recognition of mRNA 5' cap by human nuclear cap-binding complex. Rna, 2005, 11, 1355-1363.	3.5	59
96	NEW AFFINITY RESIN FOR PURIFICATION OF CAP-BINDING PROTEINS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 503-506.	1.1	0
97	SYNTHESIS AND ENZYMATIC CHARACTERIZATION OF METHYLENE ANALOGS OF ADENOSINE 5′-TETRAPHOSPHATE (P4A). Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 589-593.	1.1	6
98	Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. Rna, 2004, 10, 1479-1487.	3.5	75
99	Contribution of Trans-splicing, 5′ -Leader Length, Cap-Poly(A) Synergism, and Initiation Factors to Nematode Translation in an Ascaris suum Embryo Cell-free System. Journal of Biological Chemistry, 2004, 279, 45573-45585.	3.4	67
100	Cap-binding activity of an eIF4E homolog from Leishmania. Rna, 2004, 10, 1764-1775.	3.5	46
101	Nematode m7GpppG and m32,2,7GpppG decapping: Activities in Ascaris embryos and characterization of C. elegans scavenger DcpS. Rna, 2004, 10, 1609-1624.	3.5	53
102	Thermodynamics of mRNA 5†Cap Binding by Eukaryotic Translation Initiation Factor eIF4Eâ€. Biochemistry, 2004, 43, 13305-13317.	2.5	41
103	Influence of Electric Charge Variation at Residues 209 and 159 on the Interaction of eIF4E with the mRNA $5a^{-}$ Terminus a^{-} . Biochemistry, 2004, 43, 5370-5379.	2.5	70
104	Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. Rna, 2004, 10, 1469-1478.	3.5	33
105	Synthesis of Novel mRNA 5′ Cap-Analogues: Dinucleoside P1, P3-Tri-, P1, P4-Tetra-, and P1, P5-Pentaphosphates. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 691-694.	1.1	17
106	Charge Distribution in 7-Methylguanine Regarding Cation-Ï€ Interaction with Protein Factor eIF4E. Biophysical Journal, 2003, 85, 1450-1456.	0.5	22
107	Partial Molar Volumes of mRNA 5′ Cap Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1553-1556.	1.1	1
108	Influence of the Length of the Phosphate Chain in mRNA $5\hat{a}\in^2$ Cap Analogues on Their Interaction with Eukaryotic Initiation Factor 4E. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1707-1710.	1.1	4

#	Article	IF	Citations
109	Binding Studies of Eukaryotic Initiation Factor eIF4E with Novel mRNA Dinucleotide Cap Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1703-1706.	1.1	2
110	Interaction Between Yeast Eukaryotic Initiation Factor elF4E and mRNA 5′ Cap Analogues Differs from That for Murine elF4E. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1711-1714.	1.1	9
111	Phosphorylation of eIF4E attenuates its interaction with mRNA 5' cap analogs by electrostatic repulsion: Intein-mediated protein ligation strategy to obtain phosphorylated protein. Rna, 2003, 9, 52-61.	3.5	124
112	Thermodynamics of 7-Methylguanosine Cation Stacking with Tryptophan upon mRNA 5′ Cap Binding to Translation Factor elF4E. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1557-1561.	1.1	3
113	Novel "anti-reverse" cap analogs with superior translational properties. Rna, 2003, 9, 1108-1122.	3.5	214
114	The g5R (D250) Gene of African Swine Fever Virus Encodes a Nudix Hydrolase That Preferentially Degrades Diphosphoinositol Polyphosphates. Journal of Virology, 2002, 76, 1415-1421.	3.4	39
115	Positive Heat Capacity Change upon Specific Binding of Translation Initiation Factor elF4E to mRNA 5†Cap. Biochemistry, 2002, 41, 12140-12148.	2.5	62
116	Biophysical Studies of elF4E Cap-binding Protein: Recognition of mRNA 5′ Cap Structure and Synthetic Fragments of elF4G and 4E-BP1 Proteins. Journal of Molecular Biology, 2002, 319, 615-635.	4.2	353
117	Study of the 2719 mutant of the c-H-ras oncogene in a bi-intronic alternative splicing system. Oncogene, 2002, 21, 5649-5653.	5.9	3
118	Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO Journal, 2002, 21, 4680-4690.	7.8	35
119	Catalytic efficiency of divalent metal salts in dinucleoside 5',5'-triphosphate bond formation., 2002,,.		5
120	Interaction of three Caenorhabditis elegans isoforms of translation initiation factor eIF4E with mono- and trimethylated mRNA 5' cap analogues Acta Biochimica Polonica, 2002, 49, 671-682.	0.5	13
121	Interaction of three Caenorhabditis elegans isoforms of translation initiation factor eIF4E with mono- and trimethylated mRNA 5' cap analogues. Acta Biochimica Polonica, 2002, 49, 671-82.	0.5	5
122	Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme. Antiviral Research, 1999, 42, 35-46.	4.1	24
123	The Cu ²⁺ -Promoted Cleavage of mRNA 5′- <i>cap</i> Analogs: A Kinetic Study with P ¹ -(7-Methylguanosin-5′-yl) P ³ -(Nucleosid-5′-yl) Triphospates and P ¹ -(7-Methylguanosin-5′-yl) P ⁴ -(Guanosin-5′-yl) Tetraphosphate. Nucleosides & Nucleotides. 1999, 18, 11-21.	0.5	11
124	Quantitative Assessment of mRNA Cap Analogues as Inhibitors of in Vitro Translationâ€. Biochemistry, 1999, 38, 8538-8547.	2.5	121
125	Fluorescence Studies on Association of Human Translation Initiation Factor eIF4E with mRNA cap-Analogues. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 278-284.	1.4	18
126	Spectroscopic studies on association of mRNA cap-analogues with human translation factor eIF4E. From modelling of interactions to inhibitory properties. , 1999, , .		5

#	Article	IF	Citations
127	A fluorescence spectroscopic study on the binding of mRNA $5\hat{a}\in^2$ -cap-analogs to human translation initiation factor eIF4E: a critical evaluation of the sources of error. Journal of Photochemistry and Photobiology B: Biology, 1998, 43, 158-163.	3.8	5
128	Multiple Isoforms of Eukaryotic Protein Synthesis Initiation Factor 4E in Caenorhabditis elegans Can Distinguish between Mono- and Trimethylated mRNA Cap Structures. Journal of Biological Chemistry, 1998, 273, 10538-10542.	3.4	84
129	Fluorescence and NMR studies of intramolecular stacking of mRNA cap-analogues. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1354, 145-152.	2.4	16
130	1H NMR and fluorescence studies of new mRNA 5'-cap analogues. Collection of Czechoslovak Chemical Communications, 1996, 61, 197-202.	1.0	24
131	Inter- and intramolecular stacking of mRNA cap-analogues – relevance to initiation of translation. Collection of Czechoslovak Chemical Communications, 1996, 61, 217-221.	1.0	3
132	Phosphorylation of Eukaryotic Protein Synthesis Initiation Factor 4E at Ser-209. Journal of Biological Chemistry, 1995, 270, 14597-14603.	3.4	196
133	A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell, 1994, 78, 657-668.	28.9	493
134	Association of nucleosides and their 5′-monophosphates with a tryptophan containing tripeptide, Trp-Leu-Glu: The source of an overestimation by fluorescence spectroscopy. Biophysical Chemistry, 1993, 47, 233-240.	2.8	17
135	Synthesis of m22,7GTP- and m32,2,7GTP-Sepharose 4B: New affinity resins for isolation of cap binding proteins. Collection of Czechoslovak Chemical Communications, 1993, 58, 132-137.	1.0	8
136	Synthesis and properties of new NH2 and N7 substituted GMP and GTP 5'-mRNA cap analogues. Collection of Czechoslovak Chemical Communications, 1993, 58, 138-141.	1.0	15
137	A comparison of the binding of methylated cap analogs to wheat germ protein synthesis initiation factors 4F and (iso) 4F. Biochemistry, 1991, 30, 1624-1627.	2.5	59
138	Electroanalytical Study on Nicotinamide 7-Methylguanine Dinucleotide (Nm7GD+), Analog of Coenzyme NAD+and Related Compounds. Nucleosides & Nucleotides, 1990, 9, 437-438.	0.5	3
139	Fluorescence studies on P1,P3-dinucleoside triphosphates related to mRNA cap: Acidity and intramolecular stacking. Collection of Czechoslovak Chemical Communications, 1990, 55, 2765-2768.	1.0	7
140	A spectroscopic study of the binding of N-7-substituted cap analogs to human protein synthesis initiation factor 4E. Biochemistry, 1990, 29, 3337-3341.	2.5	57
141	The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell, 1990, 62, 569-577.	28.9	314
142	Synthesis, Conformation and Hydrolytic Stability of p ¹ ,p ³ â^'Dinucleoside Triphosphates Related to mRNA 5′-cap, and Comparative Kinetic Studies on their Nucleoside and Nucleoside Monophosphate Analogs. Nucleosides & Nucleotides, 1990, 9, 599-618.	0.5	44
143	Synthesis, conformation and hydrolytic stability of modified mRNA 5'-cap structures: P1,P3-dinucleoside triphosphates derived from guanosine and acyclic analogues of 7-methyl-, N2,7-dimethyl- and N2,N2,7-trimethylguanosines. Collection of Czechoslovak Chemical Communications. 1990. 55. 117-120.	1.0	3
144	Inhibition of eukaryotic translation by nucleoside 5'-monophosphate analogs of mRNA 5'-cap: changes in N7 substituent affect analog activity. Biochemistry, 1989, 28, 4771-4778.	2.5	57

#	Article	IF	CITATIONS
145	Base stacking of simple mRNA cap analogues. Biophysical Chemistry, 1989, 33, 289-293.	2.8	14
146	7-Methylguanine Nucleotides and Their Structural Analogues; Protolytic Equilibria, Complexing with Magnesium(II) Ion and Kinetics for Alkaline Opening of the Imidazole Ring Acta Chemica Scandinavica, 1988, 42b, 86-92.	0.7	16
147	Inhibition of eukaryotic translation by analogs of messenger RNA 5'-cap: chemical and biological consequences of 5'-phosphate modifications of 7-methylguanosine 5'-monophosphate. Biochemistry, 1987, 26, 4372-4380.	2.5	50
148	Chemical synthesis and characterization of 7-methylguanosine cap analogs. Biochemistry, 1985, 24, 1701-1707.	2.5	79
149	13C-n.m.r. analysis of the effects of dissociation of the hydroxyl groups of 1-β-d-arabinofuranosylcytosine and its O'-methyl derivatives on conformation. Carbohydrate Research, 1981, 89, 21-32.	2.3	0
150	Conformational parameters of the carbohydrate moieties of \hat{l}_{\pm} -arabinonucleosides. Carbohydrate Research, 1981, 92, 21-36.	2.3	7
151	Assignment of reovirus mRNA ribosome binding sites to virion genome segments by nucleotide sequence analyses. Nucleic Acids Research, 1980, 8, 337-350.	14.5	37
152	Proximity of mRNA5′-region and 18S rRNA in eukaryotic initiation complexes. Nature, 1980, 286, 226-230.	27.8	60
153	REOVIRUS GENOME RNA: COMMON 3′-TERMINAL NUCLEOTIDE SEQUENCES AND ASSIGNMENT OF mRNA RIBOSOME BINDING SITES TO VIRION GENOME SEGMENTS. , 1980, , 117-127.		О
154	Correlations of conformational parameters and equilibrium conformational states in a variety of \hat{l}^2 -d-arabinonucleosides and their analogues. Nucleic Acids and Protein Synthesis, 1979, 562, 177-191.	1.7	19
155	Structure and conformation of pyrimidine lyxofuranosides. 1betaD-Lyxofuranosyluracil, 1betaD-lyxofuranosylcytosine, and some O'-methyl derivatives. Journal of the American Chemical Society, 1979, 101, 4724-4729.	13.7	15
156	Spectrophotometric Determination of the pK Values for Dissociation of the Sugar Hydroxyls in Pyrimidine Arabinonucleosides. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1975, 30, 565-570.	1.4	8