Hisayuki Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133296/publications.pdf

Version: 2024-02-01

27 papers 3,013 citations

331670 21 h-index 27 g-index

29 all docs 29 docs citations

times ranked

29

4805 citing authors

#	Article	IF	CITATIONS
1	Distinct Metabolic Flow Enables Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Stem Cell, 2013, 12, 127-137.	11.1	860
2	Generation of Induced Pluripotent Stem Cells from Human Terminally Differentiated Circulating T Cells. Cell Stem Cell, 2010, 7, 11-14.	11.1	547
3	MiRâ€133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO Journal, 2014, 33, 1565-1581.	7.8	272
4	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	13.7	268
5	Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovascular Research, 2012, 95, 419-429.	3.8	171
6	Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports, 2017, 8, 548-560.	4.8	108
7	ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes and Development, 2017, 31, 1770-1783.	5.9	87
8	Stem Cell Aging in Skeletal Muscle Regeneration and Disease. International Journal of Molecular Sciences, 2020, 21, 1830.	4.1	83
9	Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell, 2019, 25, 69-86.e5.	11.1	72
10	Impaired respiratory function in MELASâ€induced pluripotent stem cells with high heteroplasmy levels. FEBS Open Bio, 2015, 5, 219-225.	2.3	59
11	Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nature Communications, 2021, 12, 257.	12.8	54
12	Zac1 Is an Essential Transcription Factor for Cardiac Morphogenesis. Circulation Research, 2010, 106, 1083-1091.	4.5	46
13	The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nature Cell Biology, 2021, 23, 467-475.	10.3	45
14	A Novel GDP-dependent Pyruvate Kinase Isozyme from Toxoplasma gondii Localizes to Both the Apicoplast and the Mitochondrion. Journal of Biological Chemistry, 2008, 283, 14041-14052.	3.4	44
15	Embryonic type Na+ channel \hat{l}^2 -subunit, SCN3B masks the disease phenotype of Brugada syndrome. Scientific Reports, 2016, 6, 34198.	3.3	41
16	H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 825-833.	4.8	40
17	G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nature Communications, 2015, 6, 6745.	12.8	39
18	miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish. Biochemical and Biophysical Research Communications, 2012, 425, 755-761.	2.1	38

#	Article	lF	CITATIONS
19	Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte. Journal of Molecular and Cellular Cardiology, 2014, 72, 241-249.	1.9	32
20	Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochemistry and Biophysics Reports, 2017, 9, 245-256.	1.3	32
21	Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient. Scientific Reports, 2017, 7, 44312.	3.3	27
22	Generation and Characterization of Functional Cardiomyocytes Derived from Human T Cell-Derived Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e85645.	2.5	19
23	Distinct iPS Cells Show Different Cardiac Differentiation Efficiency. Stem Cells International, 2013, 2013, 1-11.	2.5	14
24	Analysis of cardiomyocyte movement in the developing murine heart. Biochemical and Biophysical Research Communications, 2015, 464, 1000-1007.	2.1	6
25	Testosterone induces cardiomyocyte differentiation from embryonic stem cells. Journal of Molecular and Cellular Cardiology, 2013, 62, 69-71.	1.9	4
26	Dermal fibroblast-like cells reprogrammed directly from adipocytes in mouse. Scientific Reports, 2020, 10, 21467.	3.3	3
27	Epigenetic barrier against the propagation of fluctuating gene expression in embryonic stem cells. FEBS Letters, 2017, 591, 2879-2889.	2.8	0