James Chappell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133136/publications.pdf Version: 2024-02-01

IAMES CHADDELL

#	Article	IF	CITATIONS
1	Uncovering the Distinct Properties of a Bacterial Type I-E CRISPR Activation System. ACS Synthetic Biology, 2022, , .	3.8	3
2	RNA Compensation: A Positive Feedback Insulation Strategy for RNA-Based Transcription Networks. ACS Synthetic Biology, 2022, 11, 1240-1250.	3.8	5
3	Activating natural product synthesis using CRISPR interference and activation systems in <i>Streptomyces</i> . Nucleic Acids Research, 2022, 50, 7751-7760.	14.5	13
4	Rational engineering of a modular bacterial CRISPR–Cas activation platform with expanded target range. Nucleic Acids Research, 2021, 49, 4793-4802.	14.5	22
5	Brave new â€~RNA' world—advances in RNA tools and their application for understanding and engineering biological systems. Current Opinion in Systems Biology, 2019, 14, 32-40.	2.6	15
6	Distinct timescales of RNA regulators enable the construction of a genetic pulse generator. Biotechnology and Bioengineering, 2019, 116, 1139-1151.	3.3	40
7	Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nature Communications, 2017, 8, 1051.	12.8	113
8	Turning It Up to 11: Modular Proteins Amplify RNA Sensors for Sophisticated Circuitry. Cell Systems, 2016, 3, 509-511.	6.2	0
9	Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnology and Bioengineering, 2016, 113, 216-225.	3.3	36
10	Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems. ACS Synthetic Biology, 2015, 4, 503-515.	3.8	154
11	Creating small transcription activating RNAs. Nature Chemical Biology, 2015, 11, 214-220.	8.0	220
12	A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Current Opinion in Chemical Biology, 2015, 28, 47-56.	6.1	140
13	Characterizing and prototyping genetic networks with cell-free transcription–translation reactions. Methods, 2015, 86, 60-72.	3.8	112
14	The centrality of RNA for engineering gene expression. Biotechnology Journal, 2013, 8, 1379-1395.	3.5	76