Lufeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11329421/publications.pdf

Version: 2024-02-01

				361413		454955
30		2,138		20		30
papers		citations		h-index		g-index
30		30		30		3497
all docs		docs citations		times ranked		citing authors
	papers 30	papers 30	papers citations 30 30	30 2,138 citations 30 30	papers citations h-index 30 30 30	30 2,138 20 h-index 30 30 30

#	Article	IF	CITATIONS
1	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	19
2	Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Re‣ithiation with LLZTO Garnetâ€Type Solid Electrolytes. Advanced Materials, 2022, 34, e2200655.	21.0	30
3	Multiprincipal Component P2-Na _{0.6} (Ti _{0.2} Mn _{0.2} Co _{0.2} Ni _{0.2} Ru _{0.2<td> sumb®)O<s< td=""><td>ub2⁄2</td></s<></td>}	sumb®)O <s< td=""><td>ub2⁄2</td></s<>	ub2⁄2
4	Novel Cu(Zn)–Ge–P compounds as advanced anode materials for Li-ion batteries. Energy and Environmental Science, 2021, 14, 2394-2407.	30.8	17
5	Synergistic Effect of Temperature and Electrolyte Concentration on Solidâ€State Interphase for Highâ€Performance Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100010.	5.8	2
6	Anion and cation co-doping of Na4SnS4 as sodium superionic conductors. Materials Today Physics, 2020, 15, 100281.	6.0	6
7	An In Situ Formed Surface Coating Layer Enabling LiCoO ₂ with Stable 4.6 V Highâ€Voltage Cycle Performances. Advanced Energy Materials, 2020, 10, 2001413.	19.5	201
8	Targeted synthesis and reaction mechanism discussion of Mo ₂ C based insertion-type electrodes for advanced pseudocapacitors. Journal of Materials Chemistry A, 2020, 8, 7819-7827.	10.3	14
9	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	4.1	43
10	Fast Energy Storage in Two-Dimensional MoO ₂ Enabled by Uniform Oriented Tunnels. ACS Nano, 2019, 13, 9091-9099.	14.6	59
11	Enhanced Electrochemical Performance of the Lithium-Manganese-Rich Cathode for Li-lon Batteries with Na and F CoDoping. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37842-37849.	8.0	47
12	Simple and Cost-Effective Approach To Dramatically Enhance the Durability and Capability of a Layered δ-MnO ₂ Based Electrode for Pseudocapacitors: A Practical Electrochemical Test and Mechanistic Revealing. ACS Applied Energy Materials, 2019, 2, 2743-2750.	5.1	17
13	Lithium-Doping Stabilized High-Performance P2â€"Na _{0.66} Li _{0.18} Fe _{0.12} Mn _{0.7} O ₂ Cathode for Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 6680-6689.	13.7	187
14	Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds. Journal of Power Sources, 2018, 381, 171-180.	7.8	65
15	Synthesis of biomass-derived 3D porous graphene-like via direct solid-state transformation and its potential utilization in lithium-ion battery. Ionics, 2018, 24, 1879-1886.	2.4	16
16	Computational Studies of Electrode Materials in Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702998.	19.5	137
17	Fabrication of TiO ₂ coated porous CoMn ₂ O ₄ submicrospheres for advanced lithium-ion anodes. RSC Advances, 2017, 7, 21214-21220.	3.6	13
18	Construction and Performance Characterization of α-Fe ₂ O ₃ /rGO Composite for Long-Cycling-Life Supercapacitor Anode. ACS Sustainable Chemistry and Engineering, 2017, 5, 5067-5074.	6.7	98

#	Article	IF	CITATIONS
19	Porous Functionalized Self-Standing Carbon Fiber Paper Electrodes for High-Performance Capacitive Energy Storage. ACS Applied Materials & Energy Storage. ACS Applied Materials & Energy Storage. ACS Applied Materials & Energy Storage.	8.0	40
20	High rate and high capacity lithiation of rGO-coated Co2(OH)2CO3 nanosheet arrays for lithium-ion batteries through the involvement of CO32â^'. Electrochimica Acta, 2017, 235, 98-106.	5.2	13
21	A Lowâ€Cost, Selfâ€Standing NiCo ₂ O ₄ @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702160.	14.9	277
22	Investigation into the energy storage behaviour of layered $\hat{l}\pm -V205$ as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance. Physical Chemistry Chemical Physics, 2017, 19, 24689-24695.	2.8	22
23	Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO ₂ @CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23721-23728.	8.0	83
24	Investigation into the origin of high stability of $\hat{\Gamma}$ -MnO2 pseudo-capacitive electrode using operando Raman spectroscopy. Nano Energy, 2016, 30, 293-302.	16.0	109
25	Investigations into the origin of pseudocapacitive behavior of Mn ₃ O ₄ electrodes using in operando Raman spectroscopy. Journal of Materials Chemistry A, 2015, 3, 7338-7344.	10.3	104
26	A high-performance anode for lithium ion batteries: Fe ₃ O ₄ microspheres encapsulated in hollow graphene shells. Journal of Materials Chemistry A, 2015, 3, 11847-11856.	10.3	159
27	Phase transition–induced electrochemical performance enhancement of hierarchical CoCO3/CoO nanostructure for pseudocapacitor electrode. Nano Energy, 2015, 11, 736-745.	16.0	65
28	Phase evolution of an alpha MnO 2 -based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy, 2014, 9, 161-167.	16.0	195
29	A mild route of synthesis metal/carbon novel core/shell nanospheres in ethanol system. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
30	Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. Journal of Materials Chemistry, 2012, 22, 8121.	6.7	71