
Mathias HeikenwĤlder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11328354/publications.pdf Version: 2024-02-01

MATHIAS HEIKENWÄRDER

#	Article	IF	CITATIONS
1	Immunotherapies for hepatocellular carcinoma. Nature Reviews Clinical Oncology, 2022, 19, 151-172.	27.6	643
2	Spontaneous Cholemia in C57BL/6 Mice Predisposes to Liver Cancer in NASH. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 875-878.	4.5	5
3	T cells: Friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology, 2022, 75, 1038-1049.	7.3	25
4	Inducers of the NF-κB pathways impair hepatitis delta virus replication and strongly decrease progeny infectivity inÂvitro. JHEP Reports, 2022, 4, 100415.	4.9	3
5	miRâ€579â€3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3â€Kinase–Protein Kinase B Pathway in Chronically Inflamed Liver. Hepatology Communications, 2022, 6, 1467-1481.	4.3	8
6	Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Developmental Cell, 2022, 57, 1728-1741.e6.	7.0	17
7	Lethal lipotoxicity for liver cancer therapy. Nature Cancer, 2021, 2, 138-140.	13.2	0
8	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	27.8	233
9	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
10	Interferonâ€induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Reports, 2021, 22, e49568.	4.5	38
11	XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nature Medicine, 2021, 27, 1043-1054.	30.7	95
12	The therapeutic landscape of hepatocellular carcinoma. Med, 2021, 2, 505-552.	4.4	20
13	T-cell engager antibodies enable T cells to control HBV infection and to target HBsAg-positive hepatoma in mice. Journal of Hepatology, 2021, 75, 1058-1071.	3.7	11
14	Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter. Journal of Hepatology, 2021, 75, 64-73.	3.7	31
15	The immunological and metabolic landscape in primary and metastatic liver cancer. Nature Reviews Cancer, 2021, 21, 541-557.	28.4	212
16	SpaceM reveals metabolic states of single cells. Nature Methods, 2021, 18, 799-805.	19.0	170
17	Liver Inflammation and Hepatobiliary Cancers. Trends in Cancer, 2021, 7, 606-623.	7.4	46
18	Hypoxiaâ€Inducible Factor 1 Alpha–Mediated RelB/APOBEC3B Downâ€regulation Allows Hepatitis B Virus Persistence. Hepatology, 2021, 74, 1766-1781.	7.3	17

Mathias HeikenwÄøder

#	Article	IF	CITATIONS
19	Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p. JHEP Reports, 2021, 3, 100354.	4.9	11
20	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	12.8	21
21	Mucosal or systemic microbiota exposures shape the BÂcell repertoire. Nature, 2020, 584, 274-278.	27.8	132
22	Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature, 2020, 588, 151-156.	27.8	81
23	L-Selectin/CD62L Is a Key Driver of Non-Alcoholic Steatohepatitis in Mice and Men. Cells, 2020, 9, 1106.	4.1	15
24	Hepatocyte apoptosis is tumor promoting in murine nonalcoholic steatohepatitis. Cell Death and Disease, 2020, 11, 80.	6.3	18
25	Novel patient-derived preclinical models of liver cancer. Journal of Hepatology, 2020, 72, 239-249.	3.7	41
26	A dual role for hepatocyte-intrinsic canonical NF-κB signalingÂinÂvirus control. Journal of Hepatology, 2020, 72, 960-975.	3.7	18
27	Knockdown of Virus Antigen Expression Increases Therapeutic Vaccine Efficacy in High-Titer Hepatitis B Virus Carrier Mice. Gastroenterology, 2020, 158, 1762-1775.e9.	1.3	78
28	Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut, 2019, 68, 916-927.	12.1	228
29	Krebs - Lifestyle und Umweltfaktoren als Risiko. , 2019, , .		1
30	An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents. Gastroenterology, 2019, 157, 1383-1397.e11.	1.3	62
31	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019, 216, 1700-1723.	8.5	29
32	A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Scientific Reports, 2019, 9, 6913.	3.3	12
33	From NASH to HCC: current concepts and future challenges. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 411-428.	17.8	872
34	Characterization of HCC Mouse Models: Towards an Etiology-Oriented Subtyping Approach. Molecular Cancer Research, 2019, 17, 1493-1502.	3.4	23
35	PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nature Communications, 2019, 10, 1415.	12.8	37
36	Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259

Mathias Heikenwäder

#	Article	lF	CITATIONS
37	Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice. Gastroenterology, 2019, 156, 1190-1205.e14.	1.3	19
38	Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088.	11.9	207
39	PASylated interferon α efficiently suppresses hepatitis B virus and induces anti-HBs seroconversion in HBV-transgenic mice. Antiviral Research, 2019, 161, 134-143.	4.1	24
40	Krebsfördernde Umwelteinflüsse und Erkrankungen. , 2019, , 91-107.		0
41	The immunology of hepatocellular carcinoma. Nature Immunology, 2018, 19, 222-232.	14.5	697
42	miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut, 2018, 67, 1124-1134.	12.1	96
43	microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis. Gastroenterology, 2018, 155, 1951-1966.e26.	1.3	86
44	Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology, 2018, 155, 1539-1552.e12.	1.3	85
45	PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. Cancer Cell, 2018, 34, 85-102.e9.	16.8	152
46	Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017, 66, 342-351.	12.1	359
47	Lymphotoxin Î ² receptor signalling executesHelicobacter pylori-driven gastric inflammation in a T4SS-dependent manner. Gut, 2017, 66, 1369-1381.	12.1	33
48	Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS. Cancer Cell, 2017, 31, 771-789.e6.	16.8	140
49	Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. Journal of Experimental Medicine, 2017, 214, 905-917.	8.5	63
50	Learning the Roles of the Hepatic Adaptive Immune System in Hepatocellular Carcinoma—Nature's Guide for Successful Cancer Immunotherapy. Seminars in Liver Disease, 2017, 37, 210-218.	3.6	3
51	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	16.8	122
52	Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 339-363.	4.5	25
53	P(URI)fying Novel Drivers of NASH and HCC: A Feedforward Loop of IL17A via White Adipose Tissue. Cancer Cell, 2016, 30, 15-17.	16.8	1
54	Canonical NFâ€IºB signaling in hepatocytes acts as a tumorâ€suppressor in hepatitis B virus surface antigenâ€driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology, 2016, 63, 1592-1607.	7.3	51

Mathias HeikenwÃ**g**der

#	Article	IF	CITATIONS
55	Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype. Hepatology, 2016, 63, 1888-1899.	7.3	40
56	NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531, 253-257.	27.8	552
57	Focal and Local: Ectopic Lymphoid Structures and Aggregates of Myeloid and Other Immune Cells in Liver. Gastroenterology, 2016, 151, 780-783.	1.3	8
58	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
59	Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell, 2016, 30, 533-547.	16.8	397
60	Inflammation-Induced Expression and Secretion of MicroRNA 122 Leads to Reduced Blood Levels of Kidney-Derived Erythropoietin and Anemia. Gastroenterology, 2016, 151, 999-1010.e3.	1.3	53
61	Inducing Differentiation of Premalignant Hepatic Cells as a Novel Therapeutic Strategy in Hepatocarcinoma. Cancer Research, 2016, 76, 5550-5561.	0.9	15
62	Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development. Cancer Cell, 2016, 30, 308-323.	16.8	68
63	IFN-γ Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection. Cell Host and Microbe, 2016, 20, 238-249.	11.0	33
64	Transcriptomeâ€based profiling of yolk sacâ€derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO Journal, 2016, 35, 1730-1744.	7.8	108
65	The Liver at the Nexus of Host-Microbial Interactions. Cell Host and Microbe, 2016, 20, 561-571.	11.0	86
66	The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nature Communications, 2016, 7, 11869.	12.8	68
67	The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351, 1296-1302.	12.6	871
68	Interferon-Î ³ and Tumor Necrosis Factor-α Produced by T Cells Reduce the HBV Persistence Form, cccDNA, Without Cytolysis. Gastroenterology, 2016, 150, 194-205.	1.3	250
69	The lymphotoxin β receptor is a potential therapeutic target in renal inflammation. Kidney International, 2016, 89, 113-126.	5.2	16
70	T Cells Engineered to Express a T-Cell Receptor Specific for Glypican-3 to Recognize and Kill Hepatoma Cells InÂVitro and inÂMice. Gastroenterology, 2015, 149, 1042-1052.	1.3	96
71	Next Generation of Preclinical Liver Cancer Models. Clinical Cancer Research, 2015, 21, 4254-4256.	7.0	2
72	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	7.8	178

#	Article	IF	CITATIONS
73	Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nature Immunology, 2015, 16, 1235-1244.	14.5	278
74	mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature Cell Biology, 2015, 17, 1205-1217.	10.3	552
75	The direct and indirect roles of <scp>HBV</scp> in liver cancer: prospective markers for <scp>HCC</scp> screening and potential therapeutic targets. Journal of Pathology, 2015, 235, 355-367.	4.5	116
76	Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. Journal of Clinical Investigation, 2015, 125, 3891-3903.	8.2	175
77	Lineage fate of ductular reactions in liver injury and carcinogenesis. Journal of Clinical Investigation, 2015, 125, 2445-2457.	8.2	131
78	Response to Comment on "Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA― Science, 2014, 344, 1237-1237.	12.6	27
79	Modeling Human Liver Cancer Heterogeneity: Virally Induced Transgenic Models and Mouse Genetic Models of Chronic Liver Inflammation. Current Protocols in Pharmacology, 2014, 67, Unit 14.31.1-17.	4.0	4
80	Multiple Factors Contribute to the Peripheral Induction of Cerebral Â-Amyloidosis. Journal of Neuroscience, 2014, 34, 10264-10273.	3.6	76
81	The role of lymphotoxin signaling in the development of autoimmune pancreatitis and associated secondary extra-pancreatic pathologies. Cytokine and Growth Factor Reviews, 2014, 25, 125-137.	7.2	9
82	Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA. Science, 2014, 343, 1221-1228.	12.6	774
83	Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes. Cancer Cell, 2014, 26, 549-564.	16.8	531
84	Innate Immunity and Disorders of the Liver. , 2014, , 65-77.		0
85	A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience, 2013, 16, 1618-1626.	14.8	574
86	RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation. Cell Reports, 2013, 4, 776-790.	6.4	124
87	Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 2013, 16, 273-280.	14.8	1,121
88	Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nature Immunology, 2013, 14, 574-583.	14.5	196
89	T Cells Expressing a Chimeric Antigen Receptor That Binds Hepatitis BÂVirus Envelope Proteins Control Virus Replication in Mice. Gastroenterology, 2013, 145, 456-465.	1.3	180
90	Direct Effects of Hepatitis B Virus-Encoded Proteins and Chronic Infection in Liver Cancer Development. Digestive Diseases, 2013, 31, 138-151.	1.9	45

#	Article	IF	CITATIONS
91	Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology, 2013, 57, 2358-2368.	7.3	141
92	NADPH Oxidase Deficient Mice Develop Colitis and Bacteremia upon Infection with Normally Avirulent, TTSS-1- and TTSS-2-Deficient Salmonella Typhimurium. PLoS ONE, 2013, 8, e77204.	2.5	44
93	Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut, 2012, 61, 427-438.	12.1	307
94	Toll-Like Receptor 3 Expressing Tumor Parenchyma and Infiltrating Natural Killer Cells in Hepatocellular Carcinoma Patients. Journal of the National Cancer Institute, 2012, 104, 1796-1807.	6.3	77
95	Lymphotoxin, NF-Ä,B, and Cancer: The Dark Side of Cytokines. Digestive Diseases, 2012, 30, 453-468.	1.9	61
96	Lymphotoxin Î ² Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	1.3	45
97	Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut. PLoS ONE, 2012, 7, e34812.	2.5	57
98	Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway. Cancer Cell, 2012, 22, 91-105.	16.8	256
99	Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature, 2011, 479, 547-551.	27.8	1,208
100	Lymphotoxin's Link to Carcinogenesis: Friend or Foe? From Lymphoid Neogenesis to Hepatocellular Carcinoma and Prostate Cancer. Advances in Experimental Medicine and Biology, 2011, 691, 231-249.	1.6	5
101	TAK1 Suppresses a NEMO-Dependent but NF-κB-Independent Pathway to Liver Cancer. Cancer Cell, 2010, 17, 481-496.	16.8	207
102	Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology, 2010, 51, 1226-1236.	7.3	106
103	The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea. PLoS Pathogens, 2010, 6, e1001097.	4.7	314
104	Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science, 2010, 328, 1705-1709.	12.6	657
105	Peripherally Applied Aβ-Containing Inoculates Induce Cerebral β-Amyloidosis. Science, 2010, 330, 980-982.	12.6	519
106	Mouse models of hepatocarcinogenesis: What can we learn for the prevention of human hepatocellular carcinoma?. Oncotarget, 2010, 1, 373-378.	1.8	43
107	Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma?. Oncotarget, 2010, 1, 373-8.	1.8	28
108	Bacterial Colitis Increases Susceptibility to Oral Prion Disease. Journal of Infectious Diseases, 2009, 199. 243-252.	4.0	35

#	Article	IF	CITATIONS
109	Accelerated Type III Secretion System 2-Dependent Enteropathogenesis by a <i>Salmonella enterica</i> Serovar Enteritidis PT4/6 Strain. Infection and Immunity, 2009, 77, 3569-3577.	2.2	25
110	Induction of cerebral β-amyloidosis: Intracerebral versus systemic Aβ inoculation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12926-12931.	7.1	249
111	Cells and prions: A license to replicate. FEBS Letters, 2009, 583, 2674-2684.	2.8	24
112	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	16.8	345
113	The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. Cell Host and Microbe, 2009, 6, 125-136.	11.0	135
114	Repetitive Immunization Enhances the Susceptibility of Mice to Peripherally Administered Prions. PLoS ONE, 2009, 4, e7160.	2.5	22
115	Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent stepin Δ <i>invG S</i> . Typhimurium colitis. Journal of Experimental Medicine, 2008, 205, 437-450.	8.5	164
116	Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neuroscience, 2007, 10, 1544-1553.	14.8	910
117	Insights into prion strains and neurotoxicity. Nature Reviews Molecular Cell Biology, 2007, 8, 552-561.	37.0	288
118	Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO Journal, 2007, 26, 538-547.	7.8	202
119	Pathogenesis of prion diseases: current status and future outlook. Nature Reviews Microbiology, 2006, 4, 765-775.	28.6	192
120	Early and Rapid Engraftment of Bone Marrow-Derived Microglia in Scrapie. Journal of Neuroscience, 2006, 26, 11753-11762.	3.6	82
121	Chronic Salmonella enterica Serovar Typhimurium-Induced Colitis and Cholangitis in Streptomycin-Pretreated Nramp1+/+ Mice. Infection and Immunity, 2006, 74, 5047-5057.	2.2	65
122	Coincident Scrapie Infection and Nephritis Lead to Urinary Prion Excretion. Science, 2005, 310, 324-326.	12.6	171
123	Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions. Science, 2005, 307, 1107-1110.	12.6	183
124	The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow <i>Salmonella</i> Serovar <i>typhimurium</i> to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms. Journal of Immunology, 2005, 174, 1675-1685.	0.8	344
125	Prions, Cytokines, and Chemokines: A Meeting in Lymphoid Organs. Immunity, 2005, 22, 145-154.	14.3	38
126	Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Medicine, 2004, 10, 187-192.	30.7	417

#	Article	IF	CITATIONS
127	Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. Journal of Clinical Investigation, 2004, 114, 153-160.	8.2	54
128	Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature, 2003, 425, 957-962.	27.8	195
129	Prion pathogenesis in the absence of Tollâ€like receptor signalling. EMBO Reports, 2003, 4, 195-199.	4.5	72