Theodore C White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11327500/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. MBio, 2022, 13, e0354521.	4.1	3
2	Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 651.	3.5	3
3	Mutations in <i>TAC1B</i> : a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. MBio, 2020, 11, .	4.1	101
4	Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. MBio, 2020, 11, .	4.1	23
5	Whole-Genome Analysis Illustrates Clobal Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen <i>Trichophyton rubrum</i> . Genetics, 2018, 208, 1657-1669.	2.9	48
6	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
7	Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility in <i>Saccharomyces cerevisiae</i> . MBio, 2018, 9, .	4.1	135
8	Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nature Ecology and Evolution, 2018, 2, 1312-1320.	7.8	14
9	The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport. , 2017, , 423-452.		6
10	Accumulation of Azole Drugs in the Fungal Plant Pathogen Magnaporthe oryzae Is the Result of Facilitated Diffusion Influx. Frontiers in Microbiology, 2017, 8, 1320.	3.5	13
11	A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates. Antimicrobial Agents and Chemotherapy, 2016, 60, 5858-5866.	3.2	64
12	Azole Drug Import into the Pathogenic Fungus Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 3390-3398.	3.2	30
13	Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses. Infection and Immunity, 2015, 83, 1705-1714.	2.2	29
14	Medically important fungi respond to azole drugs: an update. Future Microbiology, 2015, 10, 1355-1373.	2.0	56
15	The evolution of drug resistance in clinical isolates of Candida albicans. ELife, 2015, 4, e00662.	6.0	268
16	The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport. , 2014, , 1-27.		3
17	Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution. PLoS Genetics, 2014, 10, e1004076.	3.5	63
18	Fungi on the Skin: Dermatophytes and Malassezia. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019802-a019802.	6.2	134

#	Article	IF	CITATIONS
19	Dermatophytes. Current Biology, 2013, 23, R551-R552.	3.9	12
20	Discovery of Cryptic Polyketide Metabolites from Dermatophytes Using Heterologous Expression in <i>Aspergillus nidulans</i> . ACS Synthetic Biology, 2013, 2, 629-634.	3.8	99
21	Pharmacokinetics of Posaconazole Within Epithelial Cells and Fungi: Insights Into Potential Mechanisms of Action During Treatment and Prophylaxis. Journal of Infectious Diseases, 2013, 208, 1717-1728.	4.0	45
22	The yeast <i>Saccharomyces cerevisiae</i> Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals. Yeast, 2013, 30, 229-241.	1.7	22
23	Comparison of Sterol Import under Aerobic and Anaerobic Conditions in Three Fungal Species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 725-738.	3.4	73
24	A Foot in the Door for Dermatophyte Research. PLoS Pathogens, 2012, 8, e1002564.	4.7	61
25	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	4.1	211
26	Dermatophyte Virulence Factors: Identifying and Analyzing Genes That May Contribute to Chronic or Acute Skin Infections. International Journal of Microbiology, 2012, 2012, 1-8.	2.3	73
27	Hidden Killers: Human Fungal Infections. Science Translational Medicine, 2012, 4, 165rv13.	12.4	3,368
28	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	9.6	181
29	Sequenced dermatophyte strains: Growth rate, conidiation, drug susceptibilities, and virulence in an invertebrate model. Fungal Genetics and Biology, 2011, 48, 335-341.	2.1	38
30	The role of Candida albicans homologous recombination factors Rad54 and Rdh54 in DNA damage sensitivity. BMC Microbiology, 2011, 11, 214.	3.3	10
31	Hairpin dsRNA does not trigger RNA interference in <i>Candida albicans</i> cells. Yeast, 2011, 28, 1-8.	1.7	12
32	An A643V Amino Acid Substitution in Upc2p Contributes to Azole Resistance in Well-Characterized Clinical Isolates of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 940-942.	3.2	94
33	The <i>UPC2</i> Promoter in Candida albicans Contains Two <i>cis</i> -Acting Elements That Bind Directly to Upc2p, Resulting in Transcriptional Autoregulation. Eukaryotic Cell, 2010, 9, 1354-1362.	3.4	29
34	Azole Drugs Are Imported By Facilitated Diffusion in Candida albicans and Other Pathogenic Fungi. PLoS Pathogens, 2010, 6, e1001126.	4.7	96
35	Organization and Evolutionary Trajectory of the Mating Type (<i>MAT</i>) Locus in Dermatophyte and Dimorphic Fungal Pathogens. Eukaryotic Cell, 2010, 9, 46-58.	3.4	71
36	Genetic basis of antifungal drug resistance. Current Fungal Infection Reports, 2009, 3, 163-169.	2.6	43

#	Article	IF	CITATIONS
37	Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S. cerevisiae. Fungal Genetics and Biology, 2008, 45, 1430-1438.	2.1	37
38	Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology (United Kingdom), 2008, 154, 960-970.	1.8	58
39	Polyene susceptibility is dependent on nitrogen source in the opportunistic pathogen Candida albicans. Journal of Antimicrobial Chemotherapy, 2008, 61, 1302-1308.	3.0	7
40	Generating and Testing Molecular Hypotheses in the Dermatophytes. Eukaryotic Cell, 2008, 7, 1238-1245.	3.4	78
41	Characterization of caspofungin susceptibilities by broth and agar inCandidaalbicansclinical isolates with characterized mechanisms of azole resistance. Medical Mycology, 2008, 46, 231-239.	0.7	12
42	Micafungin activity against Candida albicans with diverse azole resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2008, 62, 349-355.	3.0	19
43	Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms. Microbiology (United Kingdom), 2008, 154, 2748-2756.	1.8	35
44	<i>cis</i> -Acting Elements within the <i>Candida albicans ERG11</i> Promoter Mediate the Azole Response through Transcription Factor Upc2p. Eukaryotic Cell, 2007, 6, 2231-2239.	3.4	53
45	TheCandida albicansmating type like locus [MTL] is not involved in chlamydospore formation. Medical Mycology, 2006, 44, 677-681.	0.7	1
46	Drug-Induced Regulation of the MDR1 Promoter in Candida albicans. Antimicrobial Agents and Chemotherapy, 2005, 49, 2785-2792.	3.2	57
47	Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagnostic Microbiology and Infectious Disease, 2005, 51, 173-178.	1.8	99
48	Role of Candida albicans Transcription Factor Upc2p in Drug Resistance and Sterol Metabolism. Eukaryotic Cell, 2004, 3, 1391-1397.	3.4	200
49	The Candida albicans Lanosterol 14-α-Demethylase (ERG11) Gene Promoter Is Maximally Induced after Prolonged Growth with Antifungal Drugs. Antimicrobial Agents and Chemotherapy, 2004, 48, 1136-1144.	3.2	56
50	R.A. Calderone, ed. Candida and Candidiasis Mycopathologia, 2004, 157, 389-390.	3.1	1
51	Antifungal Drug Resistance: Pumps and Permutations. , 2004, , 319-337.		1
52	Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergosterol and prenylation pathways inCandida albicans. Medical Mycology, 2003, 41, 417-425.	0.7	57
53	Single-Nucleotide Polymorphisms (SNPs) in Human β-Defensin 1: High-Throughput SNP Assays and Association with <i>Candida</i> Carriage in Type I Diabetics and Nondiabetic Controls. Journal of Clinical Microbiology, 2003, 41, 90-96.	3.9	176

RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology (United) Tj ETQq0 0 0 rgBT $\frac{10}{1.8}$ Tf 50 62

#	Article	IF	CITATIONS
55	Resistance Mechanisms in Clinical Isolates of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2002, 46, 1704-1713.	3.2	447
56	Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology (United Kingdom), 2002, 148, 1061-1072.	1.8	90
57	Inducible Azole Resistance Associated with a Heterogeneous Phenotype in Candida albicans. Antimicrobial Agents and Chemotherapy, 2001, 45, 52-59.	3.2	104
58	Transcriptional Analyses of Antifungal Drug Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2000, 44, 2296-2303.	3.2	75
59	The R467K Amino Acid Substitution in <i>Candida albicans</i> Sterol 14α-Demethylase Causes Drug Resistance through Reduced Affinity. Antimicrobial Agents and Chemotherapy, 2000, 44, 63-67.	3.2	117
60	Candidemia in Allogeneic Blood and Marrow Transplant Recipients: Evolution of Risk Factors after the Adoption of Prophylactic Fluconazole. Journal of Infectious Diseases, 2000, 181, 309-316.	4.0	531
61	Effects of Azole Antifungal Drugs on the Transition from Yeast Cells to Hyphae in Susceptible and Resistant Isolates of the Pathogenic Yeast <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 763-768.	3.2	72
62	The Trailing End Point Phenotype in Antifungal Susceptibility Testing Is pH Dependent. Antimicrobial Agents and Chemotherapy, 1999, 43, 1383-1386.	3.2	135
63	In vitro antifungal activity of BMS-207147 and itraconazole against yeast strains that are non-susceptible to fluconazole. Diagnostic Microbiology and Infectious Disease, 1999, 35, 163-167.	1.8	39
64	In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis. Infection and Immunity, 1999, 67, 2482-2490.	2.2	171
65	Induction of Resistance to Azole Drugs in Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 1998, 42, 3245-3250.	3.2	68
66	Rapid, Transient Fluconazole Resistance in <i>Candida albicans</i> Is Associated with Increased mRNA Levels of <i>CDR</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 2584-2589.	3.2	164
67	Distinct Patterns of Gene Expression Associated with Development of Fluconazole Resistance in Serial <i>Candida albicans</i> Isolates from Human Immunodeficiency Virus-Infected Patients with Oropharyngeal Candidiasis. Antimicrobial Agents and Chemotherapy, 1998, 42, 2932-2937.	3.2	211
68	Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance. Clinical Microbiology Reviews, 1998, 11, 382-402.	13.6	1,180
69	Development of Fluconazole Resistance in <i>Candida albicans</i> Causing Disseminated Infection in a Patient Undergoing Marrow Transplantation. Clinical Infectious Diseases, 1997, 25, 908-910.	5.8	143
70	RNA dependent RNA polymerase activity associated with the double-stranded RNA virus ofGiardia lamblia. Nucleic Acids Research, 1990, 18, 553-559.	14.5	48
71	RNA end-labeling and RNA ligase activities can produce a circular rRNA in whole cell extracts from trypanosomes. Nucleic Acids Research, 1987, 15, 3275-3290.	14.5	49
72	Alternative Processing of Sequences During Macronuclear Development inTetrahymena thermophila1. Journal of Protozoology, 1986, 33, 30-38.	0.8	24

#	Article	IF	CITATIONS
73	Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to Domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Research, 1986, 14, 9471-9489.	14.5	245
74	Eliminated sequences with different copy numbers clustered in the micronuclear genome of Tetrahymena thermophila. Molecular Genetics and Genomics, 1985, 201, 65-75.	2.4	14
75	Macronuclear persistence of sequences normally eliminated during development inTetrahymena thermophila. Genesis, 1985, 6, 113-132.	2.1	5
76	Rearrangement of the 5S ribosomal RNA gene clusters during the development and replication of the macronucleus inTetrahymena thermophila. Genesis, 1984, 5, 181-200.	2.1	9
77	Highly Purified Micro- and Macronuclei fromTetrahymena thermophilalsolated by Percoll Gradients1. Journal of Protozoology, 1983, 30, 21-30.	0.8	22
78	Molecular Principles of Antifungal Drug Resistance. , 0, , 197-212.		7