Seth S Margolis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11327203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EphB-Mediated Degradation of the RhoA GEF Ephexin5 Relieves a Developmental Brake on Excitatory Synapse Formation. Cell, 2010, 143, 442-455.	28.9	226
2	Metabolic Regulation of Oocyte Cell Death through the CaMKII-Mediated Phosphorylation of Caspase-2. Cell, 2005, 123, 89-103.	28.9	224
3	Role for the PP2A/B56Ĩ´ Phosphatase in Regulating 14-3-3 Release from Cdc25 to Control Mitosis. Cell, 2006, 127, 759-773.	28.9	183
4	PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO Journal, 2003, 22, 5734-5745.	7.8	121
5	Angelman Syndrome. Neurotherapeutics, 2015, 12, 641-650.	4.4	112
6	A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nature Structural and Molecular Biology, 2017, 24, 419-430.	8.2	109
7	A Role for PP1 in the Cdc2/Cyclin B–mediated Positive Feedback Activation of Cdc25. Molecular Biology of the Cell, 2006, 17, 1779-1789.	2.1	94
8	Metabolic Control of Oocyte Apoptosis Mediated by 14-3-3ζ-Regulated Dephosphorylation of Caspase-2. Developmental Cell, 2009, 16, 856-866.	7.0	91
9	Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome. Molecular Cell, 2018, 71, 169-177.e6.	9.7	61
10	Aven-Dependent Activation of ATM Following DNA Damage. Current Biology, 2008, 18, 933-942.	3.9	58
11	A Role for Cdc2- and PP2A-Mediated Regulation of Emi2 in the Maintenance of CSF Arrest. Current Biology, 2007, 17, 213-224.	3.9	57
12	From UBE3A to Angelman syndrome: a substrate perspective. Frontiers in Neuroscience, 2015, 9, 322.	2.8	53
13	Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. Journal of Biological Chemistry, 2020, 295, 1943-1959.	3.4	42
14	Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Molecular Cancer Research, 2003, 1, 280-9.	3.4	41
15	The proteasome and its role in the nervous system. Cell Chemical Biology, 2021, 28, 903-917.	5.2	37
16	When the Checkpoints Have Gone: Insights into Cdc25 Functional Activation. Cell Cycle, 2004, 3, 423-426.	2.6	20
17	PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Reports, 2018, 25, 2470-2483.e8	6.4	17
18	Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer's-like impairment in mice. Journal of Clinical Investigation, 2017, 127, 1646-1650.	8.2	16

SETH S MARGOLIS

#	Article	IF	CITATIONS
19	When the checkpoints have gone: insights into Cdc25 functional activation. Cell Cycle, 2004, 3, 425-8.	2.6	14
20	Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice. Scientific Reports, 2021, 11, 19414.	3.3	6
21	The emergence of Ephexin5 as a therapeutic target in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2019, 23, 263-265.	3.4	2
22	Angelman syndrome. , 2020, , 349-361.		0
23	Application of Activityâ€Based Probe, MV151, in the Mammalian Nervous System Reveals New Insights into Proteasome Changes in Human Alzheimer's Disease Brain. FASEB Journal, 2022, 36, .	0.5	0