Yunfan Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11326370/publications.pdf

Version: 2024-02-01

40 565 16710 713466
papers citations h-index g-index

41 41 41 314 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Influence of Host Plant Volatiles on the Attraction of Longhorn Beetles to Pheromones. Journal of Chemical Ecology, 2016, 42, 215-229.	1.8	52
2	Chemistry of the pheromones of mealybug and scale insects. Natural Product Reports, 2015, 32, 1067-1113.	10.3	33
3	Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles. Journal of Chemical Ecology, 2016, 42, 1181-1192.	1.8	31
4	Identifying Possible Pheromones of Cerambycid Beetles by Field Testing Known Pheromone Components in Four Widely Separated Regions of the United States. Journal of Economic Entomology, 2018, 111, 252-259.	1.8	31
5	Identification of a Pheromone Component and a Critical Synergist for the Invasive BeetleCallidiellum rufipenne(Coleoptera: Cerambycidae). Environmental Entomology, 2016, 45, 216-222.	1.4	28
6	The Role of Minor Pheromone Components in Segregating 14 Species of Longhorned Beetles (Coleoptera: Cerambycidae) of the Subfamily Cerambycinae. Journal of Economic Entomology, 2019, 112, 2236-2252.	1.8	22
7	Identification of Sex Pheromones and Sex Pheromone Mimics for Two North American Click Beetle Species (Coleoptera: Elateridae) in the Genus Cardiophorus Esch Journal of Chemical Ecology, 2018, 44, 327-338.	1.8	21
8	Synthesis and Bioassay of Racemic and Chiral <i>trans</i> -α-Necrodyl Isobutyrate, the Sex Pheromone of the Grape Mealybug <i>Pseudococcus maritimus</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 4977-4982.	5. 2	20
9	(<i>S</i>)-fuscumol and (<i>S</i>)-fuscumol acetate produced by a male <i>Astyleiopus variegatus</i> (Coleoptera: Cerambycidae). Canadian Entomologist, 2013, 145, 327-332.	0.8	20
10	Synthesis of the Pheromone of the Longtailed Mealybug, a Sterically Congested, Irregular Monoterpenoid. Journal of Organic Chemistry, 2009, 74, 7207-7209.	3.2	19
11	Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern. PLoS ONE, 2017, 12, e0183279.	2.5	19
12	(2S,4E)-2-Hydroxy-4-octen-3-one, a Male-Produced Attractant Pheromone of the Cerambycid Beetle Tylonotus bimaculatus. Journal of Chemical Ecology, 2015, 41, 670-677.	1.8	18
13	Likely Aggregation-Sex Pheromones of the Invasive Beetle <i>Callidiellum villosulum</i> , and the Related Asian Species <i>Allotraeus asiaticus</i> , <i>Semanotus bifasciatus</i> , and <i>Xylotrechus buqueti</i> (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2016, 109, 2243-2246.	1.8	18
14	(9Z)-9,13-Tetradecadien-11-ynal, the sex pheromone of the avocado seed moth, Stenoma catenifer. Tetrahedron Letters, 2008, 49, 4820-4823.	1.4	17
15	Aggregation-Sex Pheromones and Likely Pheromones of 11 South American Cerambycid Beetles, and Partitioning of Pheromone Channels. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	17
16	Pheromone identification by proxy: identification of aggregation-sex pheromones of North American cerambycid beetles as a strategy to identify pheromones of invasive Asian congeners. Journal of Pest Science, 2019, 92, 213-220.	3.7	17
17	Pheromone Composition and Chemical Ecology of Six Species of Cerambycid Beetles in the Subfamily Lamiinae. Journal of Chemical Ecology, 2020, 46, 30-39.	1.8	16
18	Isolation and identification of a male-produced aggregation-sex pheromone for the velvet longhorned beetle, Trichoferus campestris. Scientific Reports, 2019, 9, 4459.	3.3	14

#	Article	IF	Citations
19	Candidate Attractant Pheromones of Two Potentially Invasive Asian Cerambycid Species in the Genus Xylotrechus. Journal of Economic Entomology, 2015, 108, 1444-1446.	1.8	13
20	(2 <i>R</i> ,3 <i>S</i>)-2,3-Octanediol, a Female-Produced Sex Pheromone of <i>Megopis costipennis</i> (Coleoptera: Cerambycidae: Prioninae). Environmental Entomology, 2016, 45, 223-228.	1.4	13
21	The Rare North American Cerambycid Beetle Dryobius sexnotatus Shares a Novel Pyrrole Pheromone Component with Species in Asia and South America. Journal of Chemical Ecology, 2017, 43, 739-744.	1.8	13
22	Complex Blends of Synthetic Pheromones are Effective Multi-Species Attractants for Longhorned Beetles (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2020, 113, 2269-2275.	1.8	13
23	Evaluation of Methods Used in Testing Attraction of Cerambycid Beetles to Pheromone-Baited Traps. Journal of Economic Entomology, 2017, 110, 2269-2274.	1.8	12
24	Stereoselective synthesis of the obscure mealybug pheromone by hydrogenation of a tetrasubstituted alkene precursor. Tetrahedron Letters, 2011, 52, 4224-4226.	1.4	11
25	Optimizing pheromone-based lures for the invasive red-necked longhorn beetle, Aromia bungii. Journal of Pest Science, 2019, 92, 1217-1225.	3.7	11
26	Synthesis and Field Evaluation of the Sex Pheromone of <1>Stenoma catenifer 1 (Lepidoptera:) Tj ETQq0 0 0 rg	BT ₁ /Qverlo	ock 10 Tf 50 4
27	Evidence of Aggregation–Sex Pheromone Use by Longhorned Beetles (Coleoptera: Cerambycidae) Species Native to África. Environmental Entomology, 2019, 48, 189-192.	1.4	8
28	Improved Synthesis of the Pheromone of the Longtailed Mealybug. Synlett, 2010, 2010, 2319-2321.	1.8	7
29	The aggregation-sex pheromones of the cerambycid beetles Anaglyptus mysticus and Xylotrechus antilope ssp. antilope: new model species for insect conservation through pheromone-based monitoring. Chemoecology, 2019, 29, 111-124.	1.1	7
30	Improved synthesis of (9Z)-9,13-tetradecadien-11-ynal, the sex pheromone of the avocado seed moth, Stenoma catenifer. Tetrahedron Letters, 2010, 51, 1336-1337.	1.4	5
31	Enantiomers of fuscumol acetate comprise the aggregationâ€sex pheromone of the South American cerambycid beetle Psapharochrus maculatissimus , and likely pheromones of the cerambycids Eupromerella plaumanni and Hylettus seniculus. Entomologia Experimentalis Et Applicata, 2019, 167, 915-921.	1.4	5
32	A male-produced aggregation-sex pheromone of the beetle Arhopalus rusticus (Coleoptera:) Tj ETQq0 0 0 rgBT /0	Overlock 1 3.3	0 Tf 50 227 T 5
33	Field Trials With Blends of Pheromones of Native and Invasive Cerambycid Beetle Species. Environmental Entomology, 2021, 50, 1294-1298.	1.4	4
34	Enantioselective sensing of insect pheromones in water. Chemical Communications, 2021, 57, 13341-13344.	4.1	4
35	Identification of the aggregation-sex pheromone of Plagionotus arcuatus ssp. arcuatus (Coleoptera:) Tj ETQq1 1 2019, 106, 18.	0.784314 1.6	rgBT /Overlo
36	Identification of a hyperactive pheromone analog in field tests of pheromone mimics for two click beetle species in the genus Cardiophorus (Coleoptera: Elateridae). Chemoecology, 2020, 30, 297-304.	1.1	3

#	Article	IF	CITATIONS
37	A Novel Trisubstituted Tetrahydropyran as a Possible Pheromone Component for the South American Cerambycid Beetle Macropophora accentifer. Journal of Chemical Ecology, 2022, 48, 569-582.	1.8	2
38	Preparation of methyl ester precursors of biologically active agents. BioTechniques, 2008, 44, 377-384.	1.8	1
39	Irregular Terpenoids as Mealybug and Scale Pheromones: Chemistry and Applications. ACS Symposium Series, 2013, , 125-143.	0.5	1
40	Identification of Aggregation-Sex Pheromone Components for a "Living Fossilâ€, the False Click Beetle, Palaeoxenus dohrni Horn (Coleoptera: Eucnemidae). Journal of Chemical Ecology, 2019, 45, 366-370.	1.8	1